var JSEncryptExports = {};
(function(exports) {
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Basic JavaScript BN library - subset useful for RSA encryption.
// Bits per digit
var dbits
// JavaScript engine analysis
var canary = 0xdeadbeefcafe
var j_lm = ((canary & 0xffffff) == 0xefcafe)
// (public) Constructor
function BigInteger(a, b, c) {
if (a != null) {
if (typeof a === 'number') this.fromNumber(a, b, c)
else if (b == null && typeof a !== 'string') this.fromString(a, 256)
else this.fromString(a, b)
}
}
// return new, unset BigInteger
function nbi() { return new BigInteger(null) }
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i, x, w, j, c, n) {
while (--n >= 0) {
var v = x * this[i++] + w[j] + c
c = Math.floor(v / 0x4000000)
w[j++] = v & 0x3ffffff
}
return c
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i, x, w, j, c, n) {
var xl = x & 0x7fff; var xh = x >> 15
while (--n >= 0) {
var l = this[i] & 0x7fff
var h = this[i++] >> 15
var m = xh * l + h * xl
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff)
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30)
w[j++] = l & 0x3fffffff
}
return c
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i, x, w, j, c, n) {
var xl = x & 0x3fff; var xh = x >> 14
while (--n >= 0) {
var l = this[i] & 0x3fff
var h = this[i++] >> 14
var m = xh * l + h * xl
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c
c = (l >> 28) + (m >> 14) + xh * h
w[j++] = l & 0xfffffff
}
return c
}
if (j_lm && (navigator.appName == 'Microsoft Internet Explorer')) {
BigInteger.prototype.am = am2
dbits = 30
} else if (j_lm && (navigator.appName != 'Netscape')) {
BigInteger.prototype.am = am1
dbits = 26
} else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3
dbits = 28
}
BigInteger.prototype.DB = dbits
BigInteger.prototype.DM = ((1 << dbits) - 1)
BigInteger.prototype.DV = (1 << dbits)
var BI_FP = 52
BigInteger.prototype.FV = Math.pow(2, BI_FP)
BigInteger.prototype.F1 = BI_FP - dbits
BigInteger.prototype.F2 = 2 * dbits - BI_FP
// Digit conversions
var BI_RM = '0123456789abcdefghijklmnopqrstuvwxyz'
var BI_RC = new Array()
var rr, vv
rr = '0'.charCodeAt(0)
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv
rr = 'a'.charCodeAt(0)
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv
rr = 'A'.charCodeAt(0)
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv
function int2char(n) { return BI_RM.charAt(n) }
function intAt(s, i) {
var c = BI_RC[s.charCodeAt(i)]
return (c == null) ? -1 : c
}
// (protected) copy this to r
function bnpCopyTo(r) {
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i]
r.t = this.t
r.s = this.s
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
this.t = 1
this.s = (x < 0) ? -1 : 0
if (x > 0) this[0] = x
else if (x < -1) this[0] = x + this.DV
else this.t = 0
}
// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r }
// (protected) set from string and radix
function bnpFromString(s, b) {
var k
if (b == 16) k = 4
else if (b == 8) k = 3
else if (b == 256) k = 8 // byte array
else if (b == 2) k = 1
else if (b == 32) k = 5
else if (b == 4) k = 2
else { this.fromRadix(s, b); return }
this.t = 0
this.s = 0
var i = s.length; var mi = false; var sh = 0
while (--i >= 0) {
var x = (k == 8) ? s[i] & 0xff : intAt(s, i)
if (x < 0) {
if (s.charAt(i) == '-') mi = true
continue
}
mi = false
if (sh == 0) { this[this.t++] = x } else if (sh + k > this.DB) {
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh
this[this.t++] = (x >> (this.DB - sh))
} else { this[this.t - 1] |= x << sh }
sh += k
if (sh >= this.DB) sh -= this.DB
}
if (k == 8 && (s[0] & 0x80) != 0) {
this.s = -1
if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh
}
this.clamp()
if (mi) BigInteger.ZERO.subTo(this, this)
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s & this.DM
while (this.t > 0 && this[this.t - 1] == c) --this.t
}
// (public) return string representation in given radix
function bnToString(b) {
if (this.s < 0) return '-' + this.negate().toString(b)
var k
if (b == 16) k = 4
else if (b == 8) k = 3
else if (b == 2) k = 1
else if (b == 32) k = 5
else if (b == 4) k = 2
else return this.toRadix(b)
var km = (1 << k) - 1; var d; var m = false; var r = ''; var i = this.t
var p = this.DB - (i * this.DB) % k
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) > 0) { m = true; r = int2char(d) }
while (i >= 0) {
if (p < k) {
d = (this[i] & ((1 << p) - 1)) << (k - p)
d |= this[--i] >> (p += this.DB - k)
} else {
d = (this[i] >> (p -= k)) & km
if (p <= 0) { p += this.DB; --i }
}
if (d > 0) m = true
if (m) r += int2char(d)
}
}
return m ? r : '0'
}
// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this, r); return r }
// (public) |this|
function bnAbs() { return (this.s < 0) ? this.negate() : this }
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s - a.s
if (r != 0) return r
var i = this.t
r = i - a.t
if (r != 0) return (this.s < 0) ? -r : r
while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r
return 0
}
// returns bit length of the integer x
function nbits(x) {
var r = 1; var t
if ((t = x >>> 16) != 0) { x = t; r += 16 }
if ((t = x >> 8) != 0) { x = t; r += 8 }
if ((t = x >> 4) != 0) { x = t; r += 4 }
if ((t = x >> 2) != 0) { x = t; r += 2 }
if ((t = x >> 1) != 0) { x = t; r += 1 }
return r
}
// (public) return the number of bits in "this"
function bnBitLength() {
if (this.t <= 0) return 0
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM))
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n, r) {
var i
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i]
for (i = n - 1; i >= 0; --i) r[i] = 0
r.t = this.t + n
r.s = this.s
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n, r) {
for (var i = n; i < this.t; ++i) r[i - n] = this[i]
r.t = Math.max(this.t - n, 0)
r.s = this.s
}
// (protected) r = this << n
function bnpLShiftTo(n, r) {
var bs = n % this.DB
var cbs = this.DB - bs
var bm = (1 << cbs) - 1
var ds = Math.floor(n / this.DB); var c = (this.s << bs) & this.DM; var i
for (i = this.t - 1; i >= 0; --i) {
r[i + ds + 1] = (this[i] >> cbs) | c
c = (this[i] & bm) << bs
}
for (i = ds - 1; i >= 0; --i) r[i] = 0
r[ds] = c
r.t = this.t + ds + 1
r.s = this.s
r.clamp()
}
// (protected) r = this >> n
function bnpRShiftTo(n, r) {
r.s = this.s
var ds = Math.floor(n / this.DB)
if (ds >= this.t) { r.t = 0; return }
var bs = n % this.DB
var cbs = this.DB - bs
var bm = (1 << bs) - 1
r[0] = this[ds] >> bs
for (var i = ds + 1; i < this.t; ++i) {
r[i - ds - 1] |= (this[i] & bm) << cbs
r[i - ds] = this[i] >> bs
}
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs
r.t = this.t - ds
r.clamp()
}
// (protected) r = this - a
function bnpSubTo(a, r) {
var i = 0; var c = 0; var m = Math.min(a.t, this.t)
while (i < m) {
c += this[i] - a[i]
r[i++] = c & this.DM
c >>= this.DB
}
if (a.t < this.t) {
c -= a.s
while (i < this.t) {
c += this[i]
r[i++] = c & this.DM
c >>= this.DB
}
c += this.s
} else {
c += this.s
while (i < a.t) {
c -= a[i]
r[i++] = c & this.DM
c >>= this.DB
}
c -= a.s
}
r.s = (c < 0) ? -1 : 0
if (c < -1) r[i++] = this.DV + c
else if (c > 0) r[i++] = c
r.t = i
r.clamp()
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a, r) {
var x = this.abs(); var y = a.abs()
var i = x.t
r.t = i + y.t
while (--i >= 0) r[i] = 0
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t)
r.s = 0
r.clamp()
if (this.s != a.s) BigInteger.ZERO.subTo(r, r)
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs()
var i = r.t = 2 * x.t
while (--i >= 0) r[i] = 0
for (i = 0; i < x.t - 1; ++i) {
var c = x.am(i, x[i], r, 2 * i, 0, 1)
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
r[i + x.t] -= x.DV
r[i + x.t + 1] = 1
}
}
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1)
r.s = 0
r.clamp()
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m, q, r) {
var pm = m.abs()
if (pm.t <= 0) return
var pt = this.abs()
if (pt.t < pm.t) {
if (q != null) q.fromInt(0)
if (r != null) this.copyTo(r)
return
}
if (r == null) r = nbi()
var y = nbi(); var ts = this.s; var ms = m.s
var nsh = this.DB - nbits(pm[pm.t - 1]) // normalize modulus
if (nsh > 0) { pm.lShiftTo(nsh, y); pt.lShiftTo(nsh, r) } else { pm.copyTo(y); pt.copyTo(r) }
var ys = y.t
var y0 = y[ys - 1]
if (y0 == 0) return
var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0)
var d1 = this.FV / yt; var d2 = (1 << this.F1) / yt; var e = 1 << this.F2
var i = r.t; var j = i - ys; var t = (q == null) ? nbi() : q
y.dlShiftTo(j, t)
if (r.compareTo(t) >= 0) {
r[r.t++] = 1
r.subTo(t, r)
}
BigInteger.ONE.dlShiftTo(ys, t)
t.subTo(y, y) // "negative" y so we can replace sub with am later
while (y.t < ys) y[y.t++] = 0
while (--j >= 0) {
// Estimate quotient digit
var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2)
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
y.dlShiftTo(j, t)
r.subTo(t, r)
while (r[i] < --qd) r.subTo(t, r)
}
}
if (q != null) {
r.drShiftTo(ys, q)
if (ts != ms) BigInteger.ZERO.subTo(q, q)
}
r.t = ys
r.clamp()
if (nsh > 0) r.rShiftTo(nsh, r) // Denormalize remainder
if (ts < 0) BigInteger.ZERO.subTo(r, r)
}
// (public) this mod a
function bnMod(a) {
var r = nbi()
this.abs().divRemTo(a, null, r)
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r)
return r
}
// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m }
function cConvert(x) {
if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m)
else return x
}
function cRevert(x) { return x }
function cReduce(x) { x.divRemTo(this.m, null, x) }
function cMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r) }
function cSqrTo(x, r) { x.squareTo(r); this.reduce(r) }
Classic.prototype.convert = cConvert
Classic.prototype.revert = cRevert
Classic.prototype.reduce = cReduce
Classic.prototype.mulTo = cMulTo
Classic.prototype.sqrTo = cSqrTo
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if (this.t < 1) return 0
var x = this[0]
if ((x & 1) == 0) return 0
var y = x & 3 // y == 1/x mod 2^2
y = (y * (2 - (x & 0xf) * y)) & 0xf // y == 1/x mod 2^4
y = (y * (2 - (x & 0xff) * y)) & 0xff // y == 1/x mod 2^8
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y * (2 - x * y % this.DV)) % this.DV // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y > 0) ? this.DV - y : -y
}
// Montgomery reduction
function Montgomery(m) {
this.m = m
this.mp = m.invDigit()
this.mpl = this.mp & 0x7fff
this.mph = this.mp >> 15
this.um = (1 << (m.DB - 15)) - 1
this.mt2 = 2 * m.t
}
// xR mod m
function montConvert(x) {
var r = nbi()
x.abs().dlShiftTo(this.m.t, r)
r.divRemTo(this.m, null, r)
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r)
return r
}
// x/R mod m
function montRevert(x) {
var r = nbi()
x.copyTo(r)
this.reduce(r)
return r
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while (x.t <= this.mt2) // pad x so am has enough room later
{ x[x.t++] = 0 }
for (var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i] & 0x7fff
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM
// use am to combine the multiply-shift-add into one call
j = i + this.m.t
x[j] += this.m.am(0, u0, x, i, 0, this.m.t)
// propagate carry
while (x[j] >= x.DV) { x[j] -= x.DV; x[++j]++ }
}
x.clamp()
x.drShiftTo(this.m.t, x)
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x)
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x, r) { x.squareTo(r); this.reduce(r) }
// r = "xy/R mod m"; x,y != r
function montMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r) }
Montgomery.prototype.convert = montConvert
Montgomery.prototype.revert = montRevert
Montgomery.prototype.reduce = montReduce
Montgomery.prototype.mulTo = montMulTo
Montgomery.prototype.sqrTo = montSqrTo
// (protected) true iff this is even
function bnpIsEven() { return ((this.t > 0) ? (this[0] & 1) : this.s) == 0 }
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e, z) {
if (e > 0xffffffff || e < 1) return BigInteger.ONE
var r = nbi(); var r2 = nbi(); var g = z.convert(this); var i = nbits(e) - 1
g.copyTo(r)
while (--i >= 0) {
z.sqrTo(r, r2)
if ((e & (1 << i)) > 0) z.mulTo(r2, g, r)
else { var t = r; r = r2; r2 = t }
}
return z.revert(r)
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e, m) {
var z
if (e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m)
return this.exp(e, z)
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo
BigInteger.prototype.fromInt = bnpFromInt
BigInteger.prototype.fromString = bnpFromString
BigInteger.prototype.clamp = bnpClamp
BigInteger.prototype.dlShiftTo = bnpDLShiftTo
BigInteger.prototype.drShiftTo = bnpDRShiftTo
BigInteger.prototype.lShiftTo = bnpLShiftTo
BigInteger.prototype.rShiftTo = bnpRShiftTo
BigInteger.prototype.subTo = bnpSubTo
BigInteger.prototype.multiplyTo = bnpMultiplyTo
BigInteger.prototype.squareTo = bnpSquareTo
BigInteger.prototype.divRemTo = bnpDivRemTo
BigInteger.prototype.invDigit = bnpInvDigit
BigInteger.prototype.isEven = bnpIsEven
BigInteger.prototype.exp = bnpExp
// public
BigInteger.prototype.toString = bnToString
BigInteger.prototype.negate = bnNegate
BigInteger.prototype.abs = bnAbs
BigInteger.prototype.compareTo = bnCompareTo
BigInteger.prototype.bitLength = bnBitLength
BigInteger.prototype.mod = bnMod
BigInteger.prototype.modPowInt = bnModPowInt
// "constants"
BigInteger.ZERO = nbv(0)
BigInteger.ONE = nbv(1)
// Copyright (c) 2005-2009 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Extended JavaScript BN functions, required for RSA private ops.
// Version 1.1: new BigInteger("0", 10) returns "proper" zero
// Version 1.2: square() API, isProbablePrime fix
// (public)
function bnClone() { var r = nbi(); this.copyTo(r); return r }
// (public) return value as integer
function bnIntValue() {
if (this.s < 0) {
if (this.t == 1) return this[0] - this.DV
else if (this.t == 0) return -1
} else if (this.t == 1) return this[0]
else if (this.t == 0) return 0
// assumes 16 < DB < 32
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0]
}
// (public) return value as byte
function bnByteValue() { return (this.t == 0) ? this.s : (this[0] << 24) >> 24 }
// (public) return value as short (assumes DB>=16)
function bnShortValue() { return (this.t == 0) ? this.s : (this[0] << 16) >> 16 }
// (protected) return x s.t. r^x < DV
function bnpChunkSize(r) { return Math.floor(Math.LN2 * this.DB / Math.log(r)) }
// (public) 0 if this == 0, 1 if this > 0
function bnSigNum() {
if (this.s < 0) return -1
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0
else return 1
}
// (protected) convert to radix string
function bnpToRadix(b) {
if (b == null) b = 10
if (this.signum() == 0 || b < 2 || b > 36) return '0'
var cs = this.chunkSize(b)
var a = Math.pow(b, cs)
var d = nbv(a); var y = nbi(); var z = nbi(); var r = ''
this.divRemTo(d, y, z)
while (y.signum() > 0) {
r = (a + z.intValue()).toString(b).substr(1) + r
y.divRemTo(d, y, z)
}
return z.intValue().toString(b) + r
}
// (protected) convert from radix string
function bnpFromRadix(s, b) {
this.fromInt(0)
if (b == null) b = 10
var cs = this.chunkSize(b)
var d = Math.pow(b, cs); var mi = false; var j = 0; var w = 0
for (var i = 0; i < s.length; ++i) {
var x = intAt(s, i)
if (x < 0) {
if (s.charAt(i) == '-' && this.signum() == 0) mi = true
continue
}
w = b * w + x
if (++j >= cs) {
this.dMultiply(d)
this.dAddOffset(w, 0)
j = 0
w = 0
}
}
if (j > 0) {
this.dMultiply(Math.pow(b, j))
this.dAddOffset(w, 0)
}
if (mi) BigInteger.ZERO.subTo(this, this)
}
// (protected) alternate constructor
function bnpFromNumber(a, b, c) {
if (typeof b === 'number') {
// new BigInteger(int,int,RNG)
if (a < 2) this.fromInt(1)
else {
this.fromNumber(a, c)
if (!this.testBit(a - 1)) // force MSB set
{ this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this) }
if (this.isEven()) this.dAddOffset(1, 0) // force odd
while (!this.isProbablePrime(b)) {
this.dAddOffset(2, 0)
if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1), this)
}
}
} else {
// new BigInteger(int,RNG)
var x = new Array(); var t = a & 7
x.length = (a >> 3) + 1
b.nextBytes(x)
if (t > 0) x[0] &= ((1 << t) - 1); else x[0] = 0
this.fromString(x, 256)
}
}
// (public) convert to bigendian byte array
function bnToByteArray() {
var i = this.t; var r = new Array()
r[0] = this.s
var p = this.DB - (i * this.DB) % 8; var d; var k = 0
if (i-- > 0) {
if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p) { r[k++] = d | (this.s << (this.DB - p)) }
while (i >= 0) {
if (p < 8) {
d = (this[i] & ((1 << p) - 1)) << (8 - p)
d |= this[--i] >> (p += this.DB - 8)
} else {
d = (this[i] >> (p -= 8)) & 0xff
if (p <= 0) { p += this.DB; --i }
}
if ((d & 0x80) != 0) d |= -256
if (k == 0 && (this.s & 0x80) != (d & 0x80)) ++k
if (k > 0 || d != this.s) r[k++] = d
}
}
return r
}
function bnEquals(a) { return (this.compareTo(a) == 0) }
function bnMin(a) { return (this.compareTo(a) < 0) ? this : a }
function bnMax(a) { return (this.compareTo(a) > 0) ? this : a }
// (protected) r = this op a (bitwise)
function bnpBitwiseTo(a, op, r) {
var i; var f; var m = Math.min(a.t, this.t)
for (i = 0; i < m; ++i) r[i] = op(this[i], a[i])
if (a.t < this.t) {
f = a.s & this.DM
for (i = m; i < this.t; ++i) r[i] = op(this[i], f)
r.t = this.t
} else {
f = this.s & this.DM
for (i = m; i < a.t; ++i) r[i] = op(f, a[i])
r.t = a.t
}
r.s = op(this.s, a.s)
r.clamp()
}
// (public) this & a
function op_and(x, y) { return x & y }
function bnAnd(a) { var r = nbi(); this.bitwiseTo(a, op_and, r); return r }
// (public) this | a
function op_or(x, y) { return x | y }
function bnOr(a) { var r = nbi(); this.bitwiseTo(a, op_or, r); return r }
// (public) this ^ a
function op_xor(x, y) { return x ^ y }
function bnXor(a) { var r = nbi(); this.bitwiseTo(a, op_xor, r); return r }
// (public) this & ~a
function op_andnot(x, y) { return x & ~y }
function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a, op_andnot, r); return r }
// (public) ~this
function bnNot() {
var r = nbi()
for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i]
r.t = this.t
r.s = ~this.s
return r
}
// (public) this << n
function bnShiftLeft(n) {
var r = nbi()
if (n < 0) this.rShiftTo(-n, r); else this.lShiftTo(n, r)
return r
}
// (public) this >> n
function bnShiftRight(n) {
var r = nbi()
if (n < 0) this.lShiftTo(-n, r); else this.rShiftTo(n, r)
return r
}
// return index of lowest 1-bit in x, x < 2^31
function lbit(x) {
if (x == 0) return -1
var r = 0
if ((x & 0xffff) == 0) { x >>= 16; r += 16 }
if ((x & 0xff) == 0) { x >>= 8; r += 8 }
if ((x & 0xf) == 0) { x >>= 4; r += 4 }
if ((x & 3) == 0) { x >>= 2; r += 2 }
if ((x & 1) == 0) ++r
return r
}
// (public) returns index of lowest 1-bit (or -1 if none)
function bnGetLowestSetBit() {
for (var i = 0; i < this.t; ++i) { if (this[i] != 0) return i * this.DB + lbit(this[i]) }
if (this.s < 0) return this.t * this.DB
return -1
}
// return number of 1 bits in x
function cbit(x) {
var r = 0
while (x != 0) { x &= x - 1; ++r }
return r
}
// (public) return number of set bits
function bnBitCount() {
var r = 0; var x = this.s & this.DM
for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x)
return r
}
// (public) true iff nth bit is set
function bnTestBit(n) {
var j = Math.floor(n / this.DB)
if (j >= this.t) return (this.s != 0)
return ((this[j] & (1 << (n % this.DB))) != 0)
}
// (protected) this op (1<>= this.DB
}
if (a.t < this.t) {
c += a.s
while (i < this.t) {
c += this[i]
r[i++] = c & this.DM
c >>= this.DB
}
c += this.s
} else {
c += this.s
while (i < a.t) {
c += a[i]
r[i++] = c & this.DM
c >>= this.DB
}
c += a.s
}
r.s = (c < 0) ? -1 : 0
if (c > 0) r[i++] = c
else if (c < -1) r[i++] = this.DV + c
r.t = i
r.clamp()
}
// (public) this + a
function bnAdd(a) { var r = nbi(); this.addTo(a, r); return r }
// (public) this - a
function bnSubtract(a) { var r = nbi(); this.subTo(a, r); return r }
// (public) this * a
function bnMultiply(a) { var r = nbi(); this.multiplyTo(a, r); return r }
// (public) this^2
function bnSquare() { var r = nbi(); this.squareTo(r); return r }
// (public) this / a
function bnDivide(a) { var r = nbi(); this.divRemTo(a, r, null); return r }
// (public) this % a
function bnRemainder(a) { var r = nbi(); this.divRemTo(a, null, r); return r }
// (public) [this/a,this%a]
function bnDivideAndRemainder(a) {
var q = nbi(); var r = nbi()
this.divRemTo(a, q, r)
return new Array(q, r)
}
// (protected) this *= n, this >= 0, 1 < n < DV
function bnpDMultiply(n) {
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t)
++this.t
this.clamp()
}
// (protected) this += n << w words, this >= 0
function bnpDAddOffset(n, w) {
if (n == 0) return
while (this.t <= w) this[this.t++] = 0
this[w] += n
while (this[w] >= this.DV) {
this[w] -= this.DV
if (++w >= this.t) this[this.t++] = 0
++this[w]
}
}
// A "null" reducer
function NullExp() {}
function nNop(x) { return x }
function nMulTo(x, y, r) { x.multiplyTo(y, r) }
function nSqrTo(x, r) { x.squareTo(r) }
NullExp.prototype.convert = nNop
NullExp.prototype.revert = nNop
NullExp.prototype.mulTo = nMulTo
NullExp.prototype.sqrTo = nSqrTo
// (public) this^e
function bnPow(e) { return this.exp(e, new NullExp()) }
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
function bnpMultiplyLowerTo(a, n, r) {
var i = Math.min(this.t + a.t, n)
r.s = 0 // assumes a,this >= 0
r.t = i
while (i > 0) r[--i] = 0
var j
for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t)
for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i)
r.clamp()
}
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
function bnpMultiplyUpperTo(a, n, r) {
--n
var i = r.t = this.t + a.t - n
r.s = 0 // assumes a,this >= 0
while (--i >= 0) r[i] = 0
for (i = Math.max(n - this.t, 0); i < a.t; ++i) { r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n) }
r.clamp()
r.drShiftTo(1, r)
}
// Barrett modular reduction
function Barrett(m) {
// setup Barrett
this.r2 = nbi()
this.q3 = nbi()
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2)
this.mu = this.r2.divide(m)
this.m = m
}
function barrettConvert(x) {
if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m)
else if (x.compareTo(this.m) < 0) return x
else { var r = nbi(); x.copyTo(r); this.reduce(r); return r }
}
function barrettRevert(x) { return x }
// x = x mod m (HAC 14.42)
function barrettReduce(x) {
x.drShiftTo(this.m.t - 1, this.r2)
if (x.t > this.m.t + 1) { x.t = this.m.t + 1; x.clamp() }
this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3)
this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2)
while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1)
x.subTo(this.r2, x)
while (x.compareTo(this.m) >= 0) x.subTo(this.m, x)
}
// r = x^2 mod m; x != r
function barrettSqrTo(x, r) { x.squareTo(r); this.reduce(r) }
// r = x*y mod m; x,y != r
function barrettMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r) }
Barrett.prototype.convert = barrettConvert
Barrett.prototype.revert = barrettRevert
Barrett.prototype.reduce = barrettReduce
Barrett.prototype.mulTo = barrettMulTo
Barrett.prototype.sqrTo = barrettSqrTo
// (public) this^e % m (HAC 14.85)
function bnModPow(e, m) {
var i = e.bitLength(); var k; var r = nbv(1); var z
if (i <= 0) return r
else if (i < 18) k = 1
else if (i < 48) k = 3
else if (i < 144) k = 4
else if (i < 768) k = 5
else k = 6
if (i < 8) { z = new Classic(m) } else if (m.isEven()) { z = new Barrett(m) } else { z = new Montgomery(m) }
// precomputation
var g = new Array(); var n = 3; var k1 = k - 1; var km = (1 << k) - 1
g[1] = z.convert(this)
if (k > 1) {
var g2 = nbi()
z.sqrTo(g[1], g2)
while (n <= km) {
g[n] = nbi()
z.mulTo(g2, g[n - 2], g[n])
n += 2
}
}
var j = e.t - 1; var w; var is1 = true; var r2 = nbi(); var t
i = nbits(e[j]) - 1
while (j >= 0) {
if (i >= k1) w = (e[j] >> (i - k1)) & km
else {
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i)
if (j > 0) w |= e[j - 1] >> (this.DB + i - k1)
}
n = k
while ((w & 1) == 0) { w >>= 1; --n }
if ((i -= n) < 0) { i += this.DB; --j }
if (is1) { // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r)
is1 = false
} else {
while (n > 1) { z.sqrTo(r, r2); z.sqrTo(r2, r); n -= 2 }
if (n > 0) z.sqrTo(r, r2); else { t = r; r = r2; r2 = t }
z.mulTo(r2, g[w], r)
}
while (j >= 0 && (e[j] & (1 << i)) == 0) {
z.sqrTo(r, r2); t = r; r = r2; r2 = t
if (--i < 0) { i = this.DB - 1; --j }
}
}
return z.revert(r)
}
// (public) gcd(this,a) (HAC 14.54)
function bnGCD(a) {
var x = (this.s < 0) ? this.negate() : this.clone()
var y = (a.s < 0) ? a.negate() : a.clone()
if (x.compareTo(y) < 0) { var t = x; x = y; y = t }
var i = x.getLowestSetBit(); var g = y.getLowestSetBit()
if (g < 0) return x
if (i < g) g = i
if (g > 0) {
x.rShiftTo(g, x)
y.rShiftTo(g, y)
}
while (x.signum() > 0) {
if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x)
if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y)
if (x.compareTo(y) >= 0) {
x.subTo(y, x)
x.rShiftTo(1, x)
} else {
y.subTo(x, y)
y.rShiftTo(1, y)
}
}
if (g > 0) y.lShiftTo(g, y)
return y
}
// (protected) this % n, n < 2^26
function bnpModInt(n) {
if (n <= 0) return 0
var d = this.DV % n; var r = (this.s < 0) ? n - 1 : 0
if (this.t > 0) {
if (d == 0) r = this[0] % n
else for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n
}
return r
}
// (public) 1/this % m (HAC 14.61)
function bnModInverse(m) {
var ac = m.isEven()
if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO
var u = m.clone(); var v = this.clone()
var a = nbv(1); var b = nbv(0); var c = nbv(0); var d = nbv(1)
while (u.signum() != 0) {
while (u.isEven()) {
u.rShiftTo(1, u)
if (ac) {
if (!a.isEven() || !b.isEven()) { a.addTo(this, a); b.subTo(m, b) }
a.rShiftTo(1, a)
} else if (!b.isEven()) b.subTo(m, b)
b.rShiftTo(1, b)
}
while (v.isEven()) {
v.rShiftTo(1, v)
if (ac) {
if (!c.isEven() || !d.isEven()) { c.addTo(this, c); d.subTo(m, d) }
c.rShiftTo(1, c)
} else if (!d.isEven()) d.subTo(m, d)
d.rShiftTo(1, d)
}
if (u.compareTo(v) >= 0) {
u.subTo(v, u)
if (ac) a.subTo(c, a)
b.subTo(d, b)
} else {
v.subTo(u, v)
if (ac) c.subTo(a, c)
d.subTo(b, d)
}
}
if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO
if (d.compareTo(m) >= 0) return d.subtract(m)
if (d.signum() < 0) d.addTo(m, d); else return d
if (d.signum() < 0) return d.add(m); else return d
}
var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]
var lplim = (1 << 26) / lowprimes[lowprimes.length - 1]
// (public) test primality with certainty >= 1-.5^t
function bnIsProbablePrime(t) {
var i; var x = this.abs()
if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
for (i = 0; i < lowprimes.length; ++i) { if (x[0] == lowprimes[i]) return true }
return false
}
if (x.isEven()) return false
i = 1
while (i < lowprimes.length) {
var m = lowprimes[i]; var j = i + 1
while (j < lowprimes.length && m < lplim) m *= lowprimes[j++]
m = x.modInt(m)
while (i < j) if (m % lowprimes[i++] == 0) return false
}
return x.millerRabin(t)
}
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
function bnpMillerRabin(t) {
var n1 = this.subtract(BigInteger.ONE)
var k = n1.getLowestSetBit()
if (k <= 0) return false
var r = n1.shiftRight(k)
t = (t + 1) >> 1
if (t > lowprimes.length) t = lowprimes.length
var a = nbi()
for (var i = 0; i < t; ++i) {
// Pick bases at random, instead of starting at 2
a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)])
var y = a.modPow(r, this)
if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
var j = 1
while (j++ < k && y.compareTo(n1) != 0) {
y = y.modPowInt(2, this)
if (y.compareTo(BigInteger.ONE) == 0) return false
}
if (y.compareTo(n1) != 0) return false
}
}
return true
}
// protected
BigInteger.prototype.chunkSize = bnpChunkSize
BigInteger.prototype.toRadix = bnpToRadix
BigInteger.prototype.fromRadix = bnpFromRadix
BigInteger.prototype.fromNumber = bnpFromNumber
BigInteger.prototype.bitwiseTo = bnpBitwiseTo
BigInteger.prototype.changeBit = bnpChangeBit
BigInteger.prototype.addTo = bnpAddTo
BigInteger.prototype.dMultiply = bnpDMultiply
BigInteger.prototype.dAddOffset = bnpDAddOffset
BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo
BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo
BigInteger.prototype.modInt = bnpModInt
BigInteger.prototype.millerRabin = bnpMillerRabin
// public
BigInteger.prototype.clone = bnClone
BigInteger.prototype.intValue = bnIntValue
BigInteger.prototype.byteValue = bnByteValue
BigInteger.prototype.shortValue = bnShortValue
BigInteger.prototype.signum = bnSigNum
BigInteger.prototype.toByteArray = bnToByteArray
BigInteger.prototype.equals = bnEquals
BigInteger.prototype.min = bnMin
BigInteger.prototype.max = bnMax
BigInteger.prototype.and = bnAnd
BigInteger.prototype.or = bnOr
BigInteger.prototype.xor = bnXor
BigInteger.prototype.andNot = bnAndNot
BigInteger.prototype.not = bnNot
BigInteger.prototype.shiftLeft = bnShiftLeft
BigInteger.prototype.shiftRight = bnShiftRight
BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit
BigInteger.prototype.bitCount = bnBitCount
BigInteger.prototype.testBit = bnTestBit
BigInteger.prototype.setBit = bnSetBit
BigInteger.prototype.clearBit = bnClearBit
BigInteger.prototype.flipBit = bnFlipBit
BigInteger.prototype.add = bnAdd
BigInteger.prototype.subtract = bnSubtract
BigInteger.prototype.multiply = bnMultiply
BigInteger.prototype.divide = bnDivide
BigInteger.prototype.remainder = bnRemainder
BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder
BigInteger.prototype.modPow = bnModPow
BigInteger.prototype.modInverse = bnModInverse
BigInteger.prototype.pow = bnPow
BigInteger.prototype.gcd = bnGCD
BigInteger.prototype.isProbablePrime = bnIsProbablePrime
// JSBN-specific extension
BigInteger.prototype.square = bnSquare
// BigInteger interfaces not implemented in jsbn:
// BigInteger(int signum, byte[] magnitude)
// double doubleValue()
// float floatValue()
// int hashCode()
// long longValue()
// static BigInteger valueOf(long val)
// prng4.js - uses Arcfour as a PRNG
function Arcfour() {
this.i = 0
this.j = 0
this.S = new Array()
}
// Initialize arcfour context from key, an array of ints, each from [0..255]
function ARC4init(key) {
var i, j, t
for (i = 0; i < 256; ++i) { this.S[i] = i }
j = 0
for (i = 0; i < 256; ++i) {
j = (j + this.S[i] + key[i % key.length]) & 255
t = this.S[i]
this.S[i] = this.S[j]
this.S[j] = t
}
this.i = 0
this.j = 0
}
function ARC4next() {
var t
this.i = (this.i + 1) & 255
this.j = (this.j + this.S[this.i]) & 255
t = this.S[this.i]
this.S[this.i] = this.S[this.j]
this.S[this.j] = t
return this.S[(t + this.S[this.i]) & 255]
}
Arcfour.prototype.init = ARC4init
Arcfour.prototype.next = ARC4next
// Plug in your RNG constructor here
function prng_newstate() {
return new Arcfour()
}
// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
var rng_psize = 256
// Random number generator - requires a PRNG backend, e.g. prng4.js
var rng_state
var rng_pool
var rng_pptr
// Initialize the pool with junk if needed.
if (rng_pool == null) {
rng_pool = new Array()
rng_pptr = 0
var t
if (window.crypto && window.crypto.getRandomValues) {
// Extract entropy (2048 bits) from RNG if available
var z = new Uint32Array(256)
window.crypto.getRandomValues(z)
for (t = 0; t < z.length; ++t) { rng_pool[rng_pptr++] = z[t] & 255 }
}
// Use mouse events for entropy, if we do not have enough entropy by the time
// we need it, entropy will be generated by Math.random.
var onMouseMoveListener = function(ev) {
this.count = this.count || 0
if (this.count >= 256 || rng_pptr >= rng_psize) {
if (window.removeEventListener) { window.removeEventListener('mousemove', onMouseMoveListener) } else if (window.detachEvent) { window.detachEvent('onmousemove', onMouseMoveListener) }
return
}
this.count += 1
var mouseCoordinates = ev.x + ev.y
rng_pool[rng_pptr++] = mouseCoordinates & 255
}
if (window.addEventListener) { window.addEventListener('mousemove', onMouseMoveListener) } else if (window.attachEvent) { window.attachEvent('onmousemove', onMouseMoveListener) }
}
function rng_get_byte() {
if (rng_state == null) {
rng_state = prng_newstate()
// At this point, we may not have collected enough entropy. If not, fall back to Math.random
while (rng_pptr < rng_psize) {
var random = Math.floor(65536 * Math.random())
rng_pool[rng_pptr++] = random & 255
}
rng_state.init(rng_pool)
for (rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) { rng_pool[rng_pptr] = 0 }
rng_pptr = 0
}
// TODO: allow reseeding after first request
return rng_state.next()
}
function rng_get_bytes(ba) {
var i
for (i = 0; i < ba.length; ++i) ba[i] = rng_get_byte()
}
function SecureRandom() {}
SecureRandom.prototype.nextBytes = rng_get_bytes
// Depends on jsbn.js and rng.js
// Version 1.1: support utf-8 encoding in pkcs1pad2
// convert a (hex) string to a bignum object
function parseBigInt(str, r) {
return new BigInteger(str, r)
}
function linebrk(s, n) {
var ret = ''
var i = 0
while (i + n < s.length) {
ret += s.substring(i, i + n) + '\n'
i += n
}
return ret + s.substring(i, s.length)
}
function byte2Hex(b) {
if (b < 0x10) { return '0' + b.toString(16) } else { return b.toString(16) }
}
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
function pkcs1pad2(s, n) {
if (n < s.length + 11) { // TODO: fix for utf-8
console.error('Message too long for RSA')
return null
}
var ba = new Array()
var i = s.length - 1
while (i >= 0 && n > 0) {
var c = s.charCodeAt(i--)
if (c < 128) { // encode using utf-8
ba[--n] = c
} else if ((c > 127) && (c < 2048)) {
ba[--n] = (c & 63) | 128
ba[--n] = (c >> 6) | 192
} else {
ba[--n] = (c & 63) | 128
ba[--n] = ((c >> 6) & 63) | 128
ba[--n] = (c >> 12) | 224
}
}
ba[--n] = 0
var rng = new SecureRandom()
var x = new Array()
while (n > 2) { // random non-zero pad
x[0] = 0
while (x[0] == 0) rng.nextBytes(x)
ba[--n] = x[0]
}
ba[--n] = 2
ba[--n] = 0
return new BigInteger(ba)
}
// "empty" RSA key constructor
function RSAKey() {
this.n = null
this.e = 0
this.d = null
this.p = null
this.q = null
this.dmp1 = null
this.dmq1 = null
this.coeff = null
}
// Set the public key fields N and e from hex strings
function RSASetPublic(N, E) {
if (N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N, 16)
this.e = parseInt(E, 16)
} else { console.error('Invalid RSA public key') }
}
// Perform raw public operation on "x": return x^e (mod n)
function RSADoPublic(x) {
return x.modPowInt(this.e, this.n)
}
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string
function RSAEncrypt(text) {
var m = pkcs1pad2(text, (this.n.bitLength() + 7) >> 3)
if (m == null) return null
var c = this.doPublic(m)
if (c == null) return null
var h = c.toString(16)
if ((h.length & 1) == 0) return h; else return '0' + h
}
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
// function RSAEncryptB64(text) {
// var h = this.encrypt(text);
// if(h) return hex2b64(h); else return null;
// }
// protected
RSAKey.prototype.doPublic = RSADoPublic
// public
RSAKey.prototype.setPublic = RSASetPublic
RSAKey.prototype.encrypt = RSAEncrypt
// RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
// Depends on rsa.js and jsbn2.js
// Version 1.1: support utf-8 decoding in pkcs1unpad2
// Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext
function pkcs1unpad2(d, n) {
var b = d.toByteArray()
var i = 0
while (i < b.length && b[i] == 0) ++i
if (b.length - i != n - 1 || b[i] != 2) { return null }
++i
while (b[i] != 0) { if (++i >= b.length) return null }
var ret = ''
while (++i < b.length) {
var c = b[i] & 255
if (c < 128) { // utf-8 decode
ret += String.fromCharCode(c)
} else if ((c > 191) && (c < 224)) {
ret += String.fromCharCode(((c & 31) << 6) | (b[i + 1] & 63))
++i
} else {
ret += String.fromCharCode(((c & 15) << 12) | ((b[i + 1] & 63) << 6) | (b[i + 2] & 63))
i += 2
}
}
return ret
}
// Set the private key fields N, e, and d from hex strings
function RSASetPrivate(N, E, D) {
if (N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N, 16)
this.e = parseInt(E, 16)
this.d = parseBigInt(D, 16)
} else { console.error('Invalid RSA private key') }
}
// Set the private key fields N, e, d and CRT params from hex strings
function RSASetPrivateEx(N, E, D, P, Q, DP, DQ, C) {
if (N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N, 16)
this.e = parseInt(E, 16)
this.d = parseBigInt(D, 16)
this.p = parseBigInt(P, 16)
this.q = parseBigInt(Q, 16)
this.dmp1 = parseBigInt(DP, 16)
this.dmq1 = parseBigInt(DQ, 16)
this.coeff = parseBigInt(C, 16)
} else { console.error('Invalid RSA private key') }
}
// Generate a new random private key B bits long, using public expt E
function RSAGenerate(B, E) {
var rng = new SecureRandom()
var qs = B >> 1
this.e = parseInt(E, 16)
var ee = new BigInteger(E, 16)
for (;;) {
for (;;) {
this.p = new BigInteger(B - qs, 1, rng)
if (this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break
}
for (;;) {
this.q = new BigInteger(qs, 1, rng)
if (this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break
}
if (this.p.compareTo(this.q) <= 0) {
var t = this.p
this.p = this.q
this.q = t
}
var p1 = this.p.subtract(BigInteger.ONE)
var q1 = this.q.subtract(BigInteger.ONE)
var phi = p1.multiply(q1)
if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
this.n = this.p.multiply(this.q)
this.d = ee.modInverse(phi)
this.dmp1 = this.d.mod(p1)
this.dmq1 = this.d.mod(q1)
this.coeff = this.q.modInverse(this.p)
break
}
}
}
// Perform raw private operation on "x": return x^d (mod n)
function RSADoPrivate(x) {
if (this.p == null || this.q == null) { return x.modPow(this.d, this.n) }
// TODO: re-calculate any missing CRT params
var xp = x.mod(this.p).modPow(this.dmp1, this.p)
var xq = x.mod(this.q).modPow(this.dmq1, this.q)
while (xp.compareTo(xq) < 0) { xp = xp.add(this.p) }
return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq)
}
// Return the PKCS#1 RSA decryption of "ctext".
// "ctext" is an even-length hex string and the output is a plain string.
function RSADecrypt(ctext) {
var c = parseBigInt(ctext, 16)
var m = this.doPrivate(c)
if (m == null) return null
return pkcs1unpad2(m, (this.n.bitLength() + 7) >> 3)
}
// Return the PKCS#1 RSA decryption of "ctext".
// "ctext" is a Base64-encoded string and the output is a plain string.
// function RSAB64Decrypt(ctext) {
// var h = b64tohex(ctext);
// if(h) return this.decrypt(h); else return null;
// }
// protected
RSAKey.prototype.doPrivate = RSADoPrivate
// public
RSAKey.prototype.setPrivate = RSASetPrivate
RSAKey.prototype.setPrivateEx = RSASetPrivateEx
RSAKey.prototype.generate = RSAGenerate
RSAKey.prototype.decrypt = RSADecrypt;
// RSAKey.prototype.b64_decrypt = RSAB64Decrypt;
// Copyright (c) 2011 Kevin M Burns Jr.
// All Rights Reserved.
// See "LICENSE" for details.
//
// Extension to jsbn which adds facilities for asynchronous RSA key generation
// Primarily created to avoid execution timeout on mobile devices
//
// http://www-cs-students.stanford.edu/~tjw/jsbn/
//
// ---
(function() {
// Generate a new random private key B bits long, using public expt E
var RSAGenerateAsync = function(B, E, callback) {
// var rng = new SeededRandom();
var rng = new SecureRandom()
var qs = B >> 1
this.e = parseInt(E, 16)
var ee = new BigInteger(E, 16)
var rsa = this
// These functions have non-descript names because they were originally for(;;) loops.
// I don't know about cryptography to give them better names than loop1-4.
var loop1 = function() {
var loop4 = function() {
if (rsa.p.compareTo(rsa.q) <= 0) {
var t = rsa.p
rsa.p = rsa.q
rsa.q = t
}
var p1 = rsa.p.subtract(BigInteger.ONE)
var q1 = rsa.q.subtract(BigInteger.ONE)
var phi = p1.multiply(q1)
if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) {
rsa.n = rsa.p.multiply(rsa.q)
rsa.d = ee.modInverse(phi)
rsa.dmp1 = rsa.d.mod(p1)
rsa.dmq1 = rsa.d.mod(q1)
rsa.coeff = rsa.q.modInverse(rsa.p)
setTimeout(function() { callback() }, 0) // escape
} else {
setTimeout(loop1, 0)
}
}
var loop3 = function() {
rsa.q = nbi()
rsa.q.fromNumberAsync(qs, 1, rng, function() {
rsa.q.subtract(BigInteger.ONE).gcda(ee, function(r) {
if (r.compareTo(BigInteger.ONE) == 0 && rsa.q.isProbablePrime(10)) {
setTimeout(loop4, 0)
} else {
setTimeout(loop3, 0)
}
})
})
}
var loop2 = function() {
rsa.p = nbi()
rsa.p.fromNumberAsync(B - qs, 1, rng, function() {
rsa.p.subtract(BigInteger.ONE).gcda(ee, function(r) {
if (r.compareTo(BigInteger.ONE) == 0 && rsa.p.isProbablePrime(10)) {
setTimeout(loop3, 0)
} else {
setTimeout(loop2, 0)
}
})
})
}
setTimeout(loop2, 0)
}
setTimeout(loop1, 0)
}
RSAKey.prototype.generateAsync = RSAGenerateAsync
// Public API method
var bnGCDAsync = function(a, callback) {
var x = (this.s < 0) ? this.negate() : this.clone()
var y = (a.s < 0) ? a.negate() : a.clone()
if (x.compareTo(y) < 0) {
var t = x
x = y
y = t
}
var i = x.getLowestSetBit()
var g = y.getLowestSetBit()
if (g < 0) {
callback(x)
return
}
if (i < g) g = i
if (g > 0) {
x.rShiftTo(g, x)
y.rShiftTo(g, y)
}
// Workhorse of the algorithm, gets called 200 - 800 times per 512 bit keygen.
var gcda1 = function() {
if ((i = x.getLowestSetBit()) > 0) { x.rShiftTo(i, x) }
if ((i = y.getLowestSetBit()) > 0) { y.rShiftTo(i, y) }
if (x.compareTo(y) >= 0) {
x.subTo(y, x)
x.rShiftTo(1, x)
} else {
y.subTo(x, y)
y.rShiftTo(1, y)
}
if (!(x.signum() > 0)) {
if (g > 0) y.lShiftTo(g, y)
setTimeout(function() { callback(y) }, 0) // escape
} else {
setTimeout(gcda1, 0)
}
}
setTimeout(gcda1, 10)
}
BigInteger.prototype.gcda = bnGCDAsync
// (protected) alternate constructor
var bnpFromNumberAsync = function(a, b, c, callback) {
if (typeof b === 'number') {
if (a < 2) {
this.fromInt(1)
} else {
this.fromNumber(a, c)
if (!this.testBit(a - 1)) {
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this)
}
if (this.isEven()) {
this.dAddOffset(1, 0)
}
var bnp = this
var bnpfn1 = function() {
bnp.dAddOffset(2, 0)
if (bnp.bitLength() > a) bnp.subTo(BigInteger.ONE.shiftLeft(a - 1), bnp)
if (bnp.isProbablePrime(b)) {
setTimeout(function() { callback() }, 0) // escape
} else {
setTimeout(bnpfn1, 0)
}
}
setTimeout(bnpfn1, 0)
}
} else {
var x = new Array(); var t = a & 7
x.length = (a >> 3) + 1
b.nextBytes(x)
if (t > 0) x[0] &= ((1 << t) - 1); else x[0] = 0
this.fromString(x, 256)
}
}
BigInteger.prototype.fromNumberAsync = bnpFromNumberAsync
})(); var b64map = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
var b64pad = '='
function hex2b64(h) {
var i
var c
var ret = ''
for (i = 0; i + 3 <= h.length; i += 3) {
c = parseInt(h.substring(i, i + 3), 16)
ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63)
}
if (i + 1 == h.length) {
c = parseInt(h.substring(i, i + 1), 16)
ret += b64map.charAt(c << 2)
} else if (i + 2 == h.length) {
c = parseInt(h.substring(i, i + 2), 16)
ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4)
}
while ((ret.length & 3) > 0) ret += b64pad
return ret
}
// convert a base64 string to hex
function b64tohex(s) {
var ret = ''
var i
var k = 0 // b64 state, 0-3
var slop
for (i = 0; i < s.length; ++i) {
if (s.charAt(i) == b64pad) break
v = b64map.indexOf(s.charAt(i))
if (v < 0) continue
if (k == 0) {
ret += int2char(v >> 2)
slop = v & 3
k = 1
} else if (k == 1) {
ret += int2char((slop << 2) | (v >> 4))
slop = v & 0xf
k = 2
} else if (k == 2) {
ret += int2char(slop)
ret += int2char(v >> 2)
slop = v & 3
k = 3
} else {
ret += int2char((slop << 2) | (v >> 4))
ret += int2char(v & 0xf)
k = 0
}
}
if (k == 1) { ret += int2char(slop << 2) }
return ret
}
// convert a base64 string to a byte/number array
function b64toBA(s) {
// piggyback on b64tohex for now, optimize later
var h = b64tohex(s)
var i
var a = new Array()
for (i = 0; 2 * i < h.length; ++i) {
a[i] = parseInt(h.substring(2 * i, 2 * i + 2), 16)
}
return a
}
/*! asn1-1.0.2.js (c) 2013 Kenji Urushima | kjur.github.com/jsrsasign/license
*/
var JSX = JSX || {}
JSX.env = JSX.env || {}
var L = JSX; var OP = Object.prototype; var FUNCTION_TOSTRING = '[object Function]'; var ADD = ['toString', 'valueOf']
JSX.env.parseUA = function(agent) {
var numberify = function(s) {
var c = 0
return parseFloat(s.replace(/\./g, function() {
return (c++ == 1) ? '' : '.'
}))
}
var nav = navigator
var o = {
ie: 0,
opera: 0,
gecko: 0,
webkit: 0,
chrome: 0,
mobile: null,
air: 0,
ipad: 0,
iphone: 0,
ipod: 0,
ios: null,
android: 0,
webos: 0,
caja: nav && nav.cajaVersion,
secure: false,
os: null
}
var ua = agent || (navigator && navigator.userAgent)
var loc = window && window.location
var href = loc && loc.href
var m
o.secure = href && (href.toLowerCase().indexOf('https') === 0)
if (ua) {
if ((/windows|win32/i).test(ua)) {
o.os = 'windows'
} else if ((/macintosh/i).test(ua)) {
o.os = 'macintosh'
} else if ((/rhino/i).test(ua)) {
o.os = 'rhino'
}
if ((/KHTML/).test(ua)) {
o.webkit = 1
}
m = ua.match(/AppleWebKit\/([^\s]*)/)
if (m && m[1]) {
o.webkit = numberify(m[1])
if (/ Mobile\//.test(ua)) {
o.mobile = 'Apple' // iPhone or iPod Touch
m = ua.match(/OS ([^\s]*)/)
if (m && m[1]) {
m = numberify(m[1].replace('_', '.'))
}
o.ios = m
o.ipad = o.ipod = o.iphone = 0
m = ua.match(/iPad|iPod|iPhone/)
if (m && m[0]) {
o[m[0].toLowerCase()] = o.ios
}
} else {
m = ua.match(/NokiaN[^\/]*|Android \d\.\d|webOS\/\d\.\d/)
if (m) {
o.mobile = m[0]
}
if (/webOS/.test(ua)) {
o.mobile = 'WebOS'
m = ua.match(/webOS\/([^\s]*);/)
if (m && m[1]) {
o.webos = numberify(m[1])
}
}
if (/ Android/.test(ua)) {
o.mobile = 'Android'
m = ua.match(/Android ([^\s]*);/)
if (m && m[1]) {
o.android = numberify(m[1])
}
}
}
m = ua.match(/Chrome\/([^\s]*)/)
if (m && m[1]) {
o.chrome = numberify(m[1]) // Chrome
} else {
m = ua.match(/AdobeAIR\/([^\s]*)/)
if (m) {
o.air = m[0] // Adobe AIR 1.0 or better
}
}
}
if (!o.webkit) {
m = ua.match(/Opera[\s\/]([^\s]*)/)
if (m && m[1]) {
o.opera = numberify(m[1])
m = ua.match(/Version\/([^\s]*)/)
if (m && m[1]) {
o.opera = numberify(m[1]) // opera 10+
}
m = ua.match(/Opera Mini[^;]*/)
if (m) {
o.mobile = m[0] // ex: Opera Mini/2.0.4509/1316
}
} else { // not opera or webkit
m = ua.match(/MSIE\s([^;]*)/)
if (m && m[1]) {
o.ie = numberify(m[1])
} else { // not opera, webkit, or ie
m = ua.match(/Gecko\/([^\s]*)/)
if (m) {
o.gecko = 1 // Gecko detected, look for revision
m = ua.match(/rv:([^\s\)]*)/)
if (m && m[1]) {
o.gecko = numberify(m[1])
}
}
}
}
}
}
return o
}
JSX.env.ua = JSX.env.parseUA()
JSX.isFunction = function(o) {
return (typeof o === 'function') || OP.toString.apply(o) === FUNCTION_TOSTRING
}
JSX._IEEnumFix = (JSX.env.ua.ie) ? function(r, s) {
var i, fname, f
for (i = 0; i < ADD.length; i = i + 1) {
fname = ADD[i]
f = s[fname]
if (L.isFunction(f) && f != OP[fname]) {
r[fname] = f
}
}
} : function() {}
JSX.extend = function(subc, superc, overrides) {
if (!superc || !subc) {
throw new Error('extend failed, please check that ' +
'all dependencies are included.')
}
var F = function() {}; var i
F.prototype = superc.prototype
subc.prototype = new F()
subc.prototype.constructor = subc
subc.superclass = superc.prototype
if (superc.prototype.constructor == OP.constructor) {
superc.prototype.constructor = superc
}
if (overrides) {
for (i in overrides) {
if (L.hasOwnProperty(overrides, i)) {
subc.prototype[i] = overrides[i]
}
}
L._IEEnumFix(subc.prototype, overrides)
}
}
/*
* asn1.js - ASN.1 DER encoder classes
*
* Copyright (c) 2013 Kenji Urushima (kenji.urushima@gmail.com)
*
* This software is licensed under the terms of the MIT License.
* http://kjur.github.com/jsrsasign/license
*
* The above copyright and license notice shall be
* included in all copies or substantial portions of the Software.
*/
/**
* @fileOverview
* @name asn1-1.0.js
* @author Kenji Urushima kenji.urushima@gmail.com
* @version 1.0.2 (2013-May-30)
* @since 2.1
* @license MIT License
*/
/**
* kjur's class library name space
*
* This name space provides following name spaces:
*
* - {@link KJUR.asn1} - ASN.1 primitive hexadecimal encoder
* - {@link KJUR.asn1.x509} - ASN.1 structure for X.509 certificate and CRL
* - {@link KJUR.crypto} - Java Cryptographic Extension(JCE) style MessageDigest/Signature
* class and utilities
*
*
* NOTE: Please ignore method summary and document of this namespace. This caused by a bug of jsdoc2.
* @name KJUR
* @namespace kjur's class library name space
*/
var KJUR
if (typeof KJUR === 'undefined' || !KJUR) KJUR = {}
/**
* kjur's ASN.1 class library name space
*
* This is ITU-T X.690 ASN.1 DER encoder class library and
* class structure and methods is very similar to
* org.bouncycastle.asn1 package of
* well known BouncyCaslte Cryptography Library.
*
*
PROVIDING ASN.1 PRIMITIVES
* Here are ASN.1 DER primitive classes.
*
* - {@link KJUR.asn1.DERBoolean}
* - {@link KJUR.asn1.DERInteger}
* - {@link KJUR.asn1.DERBitString}
* - {@link KJUR.asn1.DEROctetString}
* - {@link KJUR.asn1.DERNull}
* - {@link KJUR.asn1.DERObjectIdentifier}
* - {@link KJUR.asn1.DERUTF8String}
* - {@link KJUR.asn1.DERNumericString}
* - {@link KJUR.asn1.DERPrintableString}
* - {@link KJUR.asn1.DERTeletexString}
* - {@link KJUR.asn1.DERIA5String}
* - {@link KJUR.asn1.DERUTCTime}
* - {@link KJUR.asn1.DERGeneralizedTime}
* - {@link KJUR.asn1.DERSequence}
* - {@link KJUR.asn1.DERSet}
*
*
* OTHER ASN.1 CLASSES
*
* - {@link KJUR.asn1.ASN1Object}
* - {@link KJUR.asn1.DERAbstractString}
* - {@link KJUR.asn1.DERAbstractTime}
* - {@link KJUR.asn1.DERAbstractStructured}
* - {@link KJUR.asn1.DERTaggedObject}
*
*
* NOTE: Please ignore method summary and document of this namespace. This caused by a bug of jsdoc2.
* @name KJUR.asn1
* @namespace
*/
if (typeof KJUR.asn1 === 'undefined' || !KJUR.asn1) KJUR.asn1 = {}
/**
* ASN1 utilities class
* @name KJUR.asn1.ASN1Util
* @classs ASN1 utilities class
* @since asn1 1.0.2
*/
KJUR.asn1.ASN1Util = new function() {
this.integerToByteHex = function(i) {
var h = i.toString(16)
if ((h.length % 2) == 1) h = '0' + h
return h
}
this.bigIntToMinTwosComplementsHex = function(bigIntegerValue) {
var h = bigIntegerValue.toString(16)
if (h.substr(0, 1) != '-') {
if (h.length % 2 == 1) {
h = '0' + h
} else {
if (!h.match(/^[0-7]/)) {
h = '00' + h
}
}
} else {
var hPos = h.substr(1)
var xorLen = hPos.length
if (xorLen % 2 == 1) {
xorLen += 1
} else {
if (!h.match(/^[0-7]/)) {
xorLen += 2
}
}
var hMask = ''
for (var i = 0; i < xorLen; i++) {
hMask += 'f'
}
var biMask = new BigInteger(hMask, 16)
var biNeg = biMask.xor(bigIntegerValue).add(BigInteger.ONE)
h = biNeg.toString(16).replace(/^-/, '')
}
return h
}
/**
* get PEM string from hexadecimal data and header string
* @name getPEMStringFromHex
* @memberOf KJUR.asn1.ASN1Util
* @function
* @param {String} dataHex hexadecimal string of PEM body
* @param {String} pemHeader PEM header string (ex. 'RSA PRIVATE KEY')
* @return {String} PEM formatted string of input data
* @description
* @example
* var pem = KJUR.asn1.ASN1Util.getPEMStringFromHex('616161', 'RSA PRIVATE KEY');
* // value of pem will be:
* -----BEGIN PRIVATE KEY-----
* YWFh
* -----END PRIVATE KEY-----
*/
this.getPEMStringFromHex = function(dataHex, pemHeader) {
var dataWA = CryptoJS.enc.Hex.parse(dataHex)
var dataB64 = CryptoJS.enc.Base64.stringify(dataWA)
var pemBody = dataB64.replace(/(.{64})/g, '$1\r\n')
pemBody = pemBody.replace(/\r\n$/, '')
return '-----BEGIN ' + pemHeader + '-----\r\n' +
pemBody +
'\r\n-----END ' + pemHeader + '-----\r\n'
}
}()
// ********************************************************************
// Abstract ASN.1 Classes
// ********************************************************************
// ********************************************************************
/**
* base class for ASN.1 DER encoder object
* @name KJUR.asn1.ASN1Object
* @class base class for ASN.1 DER encoder object
* @property {Boolean} isModified flag whether internal data was changed
* @property {String} hTLV hexadecimal string of ASN.1 TLV
* @property {String} hT hexadecimal string of ASN.1 TLV tag(T)
* @property {String} hL hexadecimal string of ASN.1 TLV length(L)
* @property {String} hV hexadecimal string of ASN.1 TLV value(V)
* @description
*/
KJUR.asn1.ASN1Object = function() {
var isModified = true
var hTLV = null
var hT = '00'
var hL = '00'
var hV = ''
/**
* get hexadecimal ASN.1 TLV length(L) bytes from TLV value(V)
* @name getLengthHexFromValue
* @memberOf KJUR.asn1.ASN1Object
* @function
* @return {String} hexadecimal string of ASN.1 TLV length(L)
*/
this.getLengthHexFromValue = function() {
if (typeof this.hV === 'undefined' || this.hV == null) {
throw 'this.hV is null or undefined.'
}
if (this.hV.length % 2 == 1) {
throw 'value hex must be even length: n=' + hV.length + ',v=' + this.hV
}
var n = this.hV.length / 2
var hN = n.toString(16)
if (hN.length % 2 == 1) {
hN = '0' + hN
}
if (n < 128) {
return hN
} else {
var hNlen = hN.length / 2
if (hNlen > 15) {
throw 'ASN.1 length too long to represent by 8x: n = ' + n.toString(16)
}
var head = 128 + hNlen
return head.toString(16) + hN
}
}
/**
* get hexadecimal string of ASN.1 TLV bytes
* @name getEncodedHex
* @memberOf KJUR.asn1.ASN1Object
* @function
* @return {String} hexadecimal string of ASN.1 TLV
*/
this.getEncodedHex = function() {
if (this.hTLV == null || this.isModified) {
this.hV = this.getFreshValueHex()
this.hL = this.getLengthHexFromValue()
this.hTLV = this.hT + this.hL + this.hV
this.isModified = false
// console.error("first time: " + this.hTLV);
}
return this.hTLV
}
/**
* get hexadecimal string of ASN.1 TLV value(V) bytes
* @name getValueHex
* @memberOf KJUR.asn1.ASN1Object
* @function
* @return {String} hexadecimal string of ASN.1 TLV value(V) bytes
*/
this.getValueHex = function() {
this.getEncodedHex()
return this.hV
}
this.getFreshValueHex = function() {
return ''
}
}
// == BEGIN DERAbstractString ================================================
/**
* base class for ASN.1 DER string classes
* @name KJUR.asn1.DERAbstractString
* @class base class for ASN.1 DER string classes
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @property {String} s internal string of value
* @extends KJUR.asn1.ASN1Object
* @description
*
* As for argument 'params' for constructor, you can specify one of
* following properties:
*
* - str - specify initial ASN.1 value(V) by a string
* - hex - specify initial ASN.1 value(V) by a hexadecimal string
*
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERAbstractString = function(params) {
KJUR.asn1.DERAbstractString.superclass.constructor.call(this)
var s = null
var hV = null
/**
* get string value of this string object
* @name getString
* @memberOf KJUR.asn1.DERAbstractString
* @function
* @return {String} string value of this string object
*/
this.getString = function() {
return this.s
}
/**
* set value by a string
* @name setString
* @memberOf KJUR.asn1.DERAbstractString
* @function
* @param {String} newS value by a string to set
*/
this.setString = function(newS) {
this.hTLV = null
this.isModified = true
this.s = newS
this.hV = stohex(this.s)
}
/**
* set value by a hexadecimal string
* @name setStringHex
* @memberOf KJUR.asn1.DERAbstractString
* @function
* @param {String} newHexString value by a hexadecimal string to set
*/
this.setStringHex = function(newHexString) {
this.hTLV = null
this.isModified = true
this.s = null
this.hV = newHexString
}
this.getFreshValueHex = function() {
return this.hV
}
if (typeof params !== 'undefined') {
if (typeof params['str'] !== 'undefined') {
this.setString(params['str'])
} else if (typeof params['hex'] !== 'undefined') {
this.setStringHex(params['hex'])
}
}
}
JSX.extend(KJUR.asn1.DERAbstractString, KJUR.asn1.ASN1Object)
// == END DERAbstractString ================================================
// == BEGIN DERAbstractTime ==================================================
/**
* base class for ASN.1 DER Generalized/UTCTime class
* @name KJUR.asn1.DERAbstractTime
* @class base class for ASN.1 DER Generalized/UTCTime class
* @param {Array} params associative array of parameters (ex. {'str': '130430235959Z'})
* @extends KJUR.asn1.ASN1Object
* @description
* @see KJUR.asn1.ASN1Object - superclass
*/
KJUR.asn1.DERAbstractTime = function(params) {
KJUR.asn1.DERAbstractTime.superclass.constructor.call(this)
var s = null
var date = null
// --- PRIVATE METHODS --------------------
this.localDateToUTC = function(d) {
utc = d.getTime() + (d.getTimezoneOffset() * 60000)
var utcDate = new Date(utc)
return utcDate
}
this.formatDate = function(dateObject, type) {
var pad = this.zeroPadding
var d = this.localDateToUTC(dateObject)
var year = String(d.getFullYear())
if (type == 'utc') year = year.substr(2, 2)
var month = pad(String(d.getMonth() + 1), 2)
var day = pad(String(d.getDate()), 2)
var hour = pad(String(d.getHours()), 2)
var min = pad(String(d.getMinutes()), 2)
var sec = pad(String(d.getSeconds()), 2)
return year + month + day + hour + min + sec + 'Z'
}
this.zeroPadding = function(s, len) {
if (s.length >= len) return s
return new Array(len - s.length + 1).join('0') + s
}
// --- PUBLIC METHODS --------------------
/**
* get string value of this string object
* @name getString
* @memberOf KJUR.asn1.DERAbstractTime
* @function
* @return {String} string value of this time object
*/
this.getString = function() {
return this.s
}
/**
* set value by a string
* @name setString
* @memberOf KJUR.asn1.DERAbstractTime
* @function
* @param {String} newS value by a string to set such like "130430235959Z"
*/
this.setString = function(newS) {
this.hTLV = null
this.isModified = true
this.s = newS
this.hV = stohex(this.s)
}
/**
* set value by a Date object
* @name setByDateValue
* @memberOf KJUR.asn1.DERAbstractTime
* @function
* @param {Integer} year year of date (ex. 2013)
* @param {Integer} month month of date between 1 and 12 (ex. 12)
* @param {Integer} day day of month
* @param {Integer} hour hours of date
* @param {Integer} min minutes of date
* @param {Integer} sec seconds of date
*/
this.setByDateValue = function(year, month, day, hour, min, sec) {
var dateObject = new Date(Date.UTC(year, month - 1, day, hour, min, sec, 0))
this.setByDate(dateObject)
}
this.getFreshValueHex = function() {
return this.hV
}
}
JSX.extend(KJUR.asn1.DERAbstractTime, KJUR.asn1.ASN1Object)
// == END DERAbstractTime ==================================================
// == BEGIN DERAbstractStructured ============================================
/**
* base class for ASN.1 DER structured class
* @name KJUR.asn1.DERAbstractStructured
* @class base class for ASN.1 DER structured class
* @property {Array} asn1Array internal array of ASN1Object
* @extends KJUR.asn1.ASN1Object
* @description
* @see KJUR.asn1.ASN1Object - superclass
*/
KJUR.asn1.DERAbstractStructured = function(params) {
KJUR.asn1.DERAbstractString.superclass.constructor.call(this)
var asn1Array = null
/**
* set value by array of ASN1Object
* @name setByASN1ObjectArray
* @memberOf KJUR.asn1.DERAbstractStructured
* @function
* @param {array} asn1ObjectArray array of ASN1Object to set
*/
this.setByASN1ObjectArray = function(asn1ObjectArray) {
this.hTLV = null
this.isModified = true
this.asn1Array = asn1ObjectArray
}
/**
* append an ASN1Object to internal array
* @name appendASN1Object
* @memberOf KJUR.asn1.DERAbstractStructured
* @function
* @param {ASN1Object} asn1Object to add
*/
this.appendASN1Object = function(asn1Object) {
this.hTLV = null
this.isModified = true
this.asn1Array.push(asn1Object)
}
this.asn1Array = new Array()
if (typeof params !== 'undefined') {
if (typeof params['array'] !== 'undefined') {
this.asn1Array = params['array']
}
}
}
JSX.extend(KJUR.asn1.DERAbstractStructured, KJUR.asn1.ASN1Object)
// ********************************************************************
// ASN.1 Object Classes
// ********************************************************************
// ********************************************************************
/**
* class for ASN.1 DER Boolean
* @name KJUR.asn1.DERBoolean
* @class class for ASN.1 DER Boolean
* @extends KJUR.asn1.ASN1Object
* @description
* @see KJUR.asn1.ASN1Object - superclass
*/
KJUR.asn1.DERBoolean = function() {
KJUR.asn1.DERBoolean.superclass.constructor.call(this)
this.hT = '01'
this.hTLV = '0101ff'
}
JSX.extend(KJUR.asn1.DERBoolean, KJUR.asn1.ASN1Object)
// ********************************************************************
/**
* class for ASN.1 DER Integer
* @name KJUR.asn1.DERInteger
* @class class for ASN.1 DER Integer
* @extends KJUR.asn1.ASN1Object
* @description
*
* As for argument 'params' for constructor, you can specify one of
* following properties:
*
* - int - specify initial ASN.1 value(V) by integer value
* - bigint - specify initial ASN.1 value(V) by BigInteger object
* - hex - specify initial ASN.1 value(V) by a hexadecimal string
*
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERInteger = function(params) {
KJUR.asn1.DERInteger.superclass.constructor.call(this)
this.hT = '02'
/**
* set value by Tom Wu's BigInteger object
* @name setByBigInteger
* @memberOf KJUR.asn1.DERInteger
* @function
* @param {BigInteger} bigIntegerValue to set
*/
this.setByBigInteger = function(bigIntegerValue) {
this.hTLV = null
this.isModified = true
this.hV = KJUR.asn1.ASN1Util.bigIntToMinTwosComplementsHex(bigIntegerValue)
}
/**
* set value by integer value
* @name setByInteger
* @memberOf KJUR.asn1.DERInteger
* @function
* @param {Integer} integer value to set
*/
this.setByInteger = function(intValue) {
var bi = new BigInteger(String(intValue), 10)
this.setByBigInteger(bi)
}
/**
* set value by integer value
* @name setValueHex
* @memberOf KJUR.asn1.DERInteger
* @function
* @param {String} hexadecimal string of integer value
* @description
*
* NOTE: Value shall be represented by minimum octet length of
* two's complement representation.
*/
this.setValueHex = function(newHexString) {
this.hV = newHexString
}
this.getFreshValueHex = function() {
return this.hV
}
if (typeof params !== 'undefined') {
if (typeof params['bigint'] !== 'undefined') {
this.setByBigInteger(params['bigint'])
} else if (typeof params['int'] !== 'undefined') {
this.setByInteger(params['int'])
} else if (typeof params['hex'] !== 'undefined') {
this.setValueHex(params['hex'])
}
}
}
JSX.extend(KJUR.asn1.DERInteger, KJUR.asn1.ASN1Object)
// ********************************************************************
/**
* class for ASN.1 DER encoded BitString primitive
* @name KJUR.asn1.DERBitString
* @class class for ASN.1 DER encoded BitString primitive
* @extends KJUR.asn1.ASN1Object
* @description
*
* As for argument 'params' for constructor, you can specify one of
* following properties:
*
* - bin - specify binary string (ex. '10111')
* - array - specify array of boolean (ex. [true,false,true,true])
* - hex - specify hexadecimal string of ASN.1 value(V) including unused bits
*
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERBitString = function(params) {
KJUR.asn1.DERBitString.superclass.constructor.call(this)
this.hT = '03'
/**
* set ASN.1 value(V) by a hexadecimal string including unused bits
* @name setHexValueIncludingUnusedBits
* @memberOf KJUR.asn1.DERBitString
* @function
* @param {String} newHexStringIncludingUnusedBits
*/
this.setHexValueIncludingUnusedBits = function(newHexStringIncludingUnusedBits) {
this.hTLV = null
this.isModified = true
this.hV = newHexStringIncludingUnusedBits
}
/**
* set ASN.1 value(V) by unused bit and hexadecimal string of value
* @name setUnusedBitsAndHexValue
* @memberOf KJUR.asn1.DERBitString
* @function
* @param {Integer} unusedBits
* @param {String} hValue
*/
this.setUnusedBitsAndHexValue = function(unusedBits, hValue) {
if (unusedBits < 0 || unusedBits > 7) {
throw 'unused bits shall be from 0 to 7: u = ' + unusedBits
}
var hUnusedBits = '0' + unusedBits
this.hTLV = null
this.isModified = true
this.hV = hUnusedBits + hValue
}
/**
* set ASN.1 DER BitString by binary string
* @name setByBinaryString
* @memberOf KJUR.asn1.DERBitString
* @function
* @param {String} binaryString binary value string (i.e. '10111')
* @description
* Its unused bits will be calculated automatically by length of
* 'binaryValue'.
* NOTE: Trailing zeros '0' will be ignored.
*/
this.setByBinaryString = function(binaryString) {
binaryString = binaryString.replace(/0+$/, '')
var unusedBits = 8 - binaryString.length % 8
if (unusedBits == 8) unusedBits = 0
for (var i = 0; i <= unusedBits; i++) {
binaryString += '0'
}
var h = ''
for (var i = 0; i < binaryString.length - 1; i += 8) {
var b = binaryString.substr(i, 8)
var x = parseInt(b, 2).toString(16)
if (x.length == 1) x = '0' + x
h += x
}
this.hTLV = null
this.isModified = true
this.hV = '0' + unusedBits + h
}
/**
* set ASN.1 TLV value(V) by an array of boolean
* @name setByBooleanArray
* @memberOf KJUR.asn1.DERBitString
* @function
* @param {array} booleanArray array of boolean (ex. [true, false, true])
* @description
* NOTE: Trailing falses will be ignored.
*/
this.setByBooleanArray = function(booleanArray) {
var s = ''
for (var i = 0; i < booleanArray.length; i++) {
if (booleanArray[i] == true) {
s += '1'
} else {
s += '0'
}
}
this.setByBinaryString(s)
}
/**
* generate an array of false with specified length
* @name newFalseArray
* @memberOf KJUR.asn1.DERBitString
* @function
* @param {Integer} nLength length of array to generate
* @return {array} array of boolean faluse
* @description
* This static method may be useful to initialize boolean array.
*/
this.newFalseArray = function(nLength) {
var a = new Array(nLength)
for (var i = 0; i < nLength; i++) {
a[i] = false
}
return a
}
this.getFreshValueHex = function() {
return this.hV
}
if (typeof params !== 'undefined') {
if (typeof params['hex'] !== 'undefined') {
this.setHexValueIncludingUnusedBits(params['hex'])
} else if (typeof params['bin'] !== 'undefined') {
this.setByBinaryString(params['bin'])
} else if (typeof params['array'] !== 'undefined') {
this.setByBooleanArray(params['array'])
}
}
}
JSX.extend(KJUR.asn1.DERBitString, KJUR.asn1.ASN1Object)
// ********************************************************************
/**
* class for ASN.1 DER OctetString
* @name KJUR.asn1.DEROctetString
* @class class for ASN.1 DER OctetString
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DEROctetString = function(params) {
KJUR.asn1.DEROctetString.superclass.constructor.call(this, params)
this.hT = '04'
}
JSX.extend(KJUR.asn1.DEROctetString, KJUR.asn1.DERAbstractString)
// ********************************************************************
/**
* class for ASN.1 DER Null
* @name KJUR.asn1.DERNull
* @class class for ASN.1 DER Null
* @extends KJUR.asn1.ASN1Object
* @description
* @see KJUR.asn1.ASN1Object - superclass
*/
KJUR.asn1.DERNull = function() {
KJUR.asn1.DERNull.superclass.constructor.call(this)
this.hT = '05'
this.hTLV = '0500'
}
JSX.extend(KJUR.asn1.DERNull, KJUR.asn1.ASN1Object)
// ********************************************************************
/**
* class for ASN.1 DER ObjectIdentifier
* @name KJUR.asn1.DERObjectIdentifier
* @class class for ASN.1 DER ObjectIdentifier
* @param {Array} params associative array of parameters (ex. {'oid': '2.5.4.5'})
* @extends KJUR.asn1.ASN1Object
* @description
*
* As for argument 'params' for constructor, you can specify one of
* following properties:
*
* - oid - specify initial ASN.1 value(V) by a oid string (ex. 2.5.4.13)
* - hex - specify initial ASN.1 value(V) by a hexadecimal string
*
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERObjectIdentifier = function(params) {
var itox = function(i) {
var h = i.toString(16)
if (h.length == 1) h = '0' + h
return h
}
var roidtox = function(roid) {
var h = ''
var bi = new BigInteger(roid, 10)
var b = bi.toString(2)
var padLen = 7 - b.length % 7
if (padLen == 7) padLen = 0
var bPad = ''
for (var i = 0; i < padLen; i++) bPad += '0'
b = bPad + b
for (var i = 0; i < b.length - 1; i += 7) {
var b8 = b.substr(i, 7)
if (i != b.length - 7) b8 = '1' + b8
h += itox(parseInt(b8, 2))
}
return h
}
KJUR.asn1.DERObjectIdentifier.superclass.constructor.call(this)
this.hT = '06'
/**
* set value by a hexadecimal string
* @name setValueHex
* @memberOf KJUR.asn1.DERObjectIdentifier
* @function
* @param {String} newHexString hexadecimal value of OID bytes
*/
this.setValueHex = function(newHexString) {
this.hTLV = null
this.isModified = true
this.s = null
this.hV = newHexString
}
/**
* set value by a OID string
* @name setValueOidString
* @memberOf KJUR.asn1.DERObjectIdentifier
* @function
* @param {String} oidString OID string (ex. 2.5.4.13)
*/
this.setValueOidString = function(oidString) {
if (!oidString.match(/^[0-9.]+$/)) {
throw 'malformed oid string: ' + oidString
}
var h = ''
var a = oidString.split('.')
var i0 = parseInt(a[0]) * 40 + parseInt(a[1])
h += itox(i0)
a.splice(0, 2)
for (var i = 0; i < a.length; i++) {
h += roidtox(a[i])
}
this.hTLV = null
this.isModified = true
this.s = null
this.hV = h
}
/**
* set value by a OID name
* @name setValueName
* @memberOf KJUR.asn1.DERObjectIdentifier
* @function
* @param {String} oidName OID name (ex. 'serverAuth')
* @since 1.0.1
* @description
* OID name shall be defined in 'KJUR.asn1.x509.OID.name2oidList'.
* Otherwise raise error.
*/
this.setValueName = function(oidName) {
if (typeof KJUR.asn1.x509.OID.name2oidList[oidName] !== 'undefined') {
var oid = KJUR.asn1.x509.OID.name2oidList[oidName]
this.setValueOidString(oid)
} else {
throw 'DERObjectIdentifier oidName undefined: ' + oidName
}
}
this.getFreshValueHex = function() {
return this.hV
}
if (typeof params !== 'undefined') {
if (typeof params['oid'] !== 'undefined') {
this.setValueOidString(params['oid'])
} else if (typeof params['hex'] !== 'undefined') {
this.setValueHex(params['hex'])
} else if (typeof params['name'] !== 'undefined') {
this.setValueName(params['name'])
}
}
}
JSX.extend(KJUR.asn1.DERObjectIdentifier, KJUR.asn1.ASN1Object)
// ********************************************************************
/**
* class for ASN.1 DER UTF8String
* @name KJUR.asn1.DERUTF8String
* @class class for ASN.1 DER UTF8String
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DERUTF8String = function(params) {
KJUR.asn1.DERUTF8String.superclass.constructor.call(this, params)
this.hT = '0c'
}
JSX.extend(KJUR.asn1.DERUTF8String, KJUR.asn1.DERAbstractString)
// ********************************************************************
/**
* class for ASN.1 DER NumericString
* @name KJUR.asn1.DERNumericString
* @class class for ASN.1 DER NumericString
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DERNumericString = function(params) {
KJUR.asn1.DERNumericString.superclass.constructor.call(this, params)
this.hT = '12'
}
JSX.extend(KJUR.asn1.DERNumericString, KJUR.asn1.DERAbstractString)
// ********************************************************************
/**
* class for ASN.1 DER PrintableString
* @name KJUR.asn1.DERPrintableString
* @class class for ASN.1 DER PrintableString
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DERPrintableString = function(params) {
KJUR.asn1.DERPrintableString.superclass.constructor.call(this, params)
this.hT = '13'
}
JSX.extend(KJUR.asn1.DERPrintableString, KJUR.asn1.DERAbstractString)
// ********************************************************************
/**
* class for ASN.1 DER TeletexString
* @name KJUR.asn1.DERTeletexString
* @class class for ASN.1 DER TeletexString
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DERTeletexString = function(params) {
KJUR.asn1.DERTeletexString.superclass.constructor.call(this, params)
this.hT = '14'
}
JSX.extend(KJUR.asn1.DERTeletexString, KJUR.asn1.DERAbstractString)
// ********************************************************************
/**
* class for ASN.1 DER IA5String
* @name KJUR.asn1.DERIA5String
* @class class for ASN.1 DER IA5String
* @param {Array} params associative array of parameters (ex. {'str': 'aaa'})
* @extends KJUR.asn1.DERAbstractString
* @description
* @see KJUR.asn1.DERAbstractString - superclass
*/
KJUR.asn1.DERIA5String = function(params) {
KJUR.asn1.DERIA5String.superclass.constructor.call(this, params)
this.hT = '16'
}
JSX.extend(KJUR.asn1.DERIA5String, KJUR.asn1.DERAbstractString)
// ********************************************************************
/**
* class for ASN.1 DER UTCTime
* @name KJUR.asn1.DERUTCTime
* @class class for ASN.1 DER UTCTime
* @param {Array} params associative array of parameters (ex. {'str': '130430235959Z'})
* @extends KJUR.asn1.DERAbstractTime
* @description
*
* As for argument 'params' for constructor, you can specify one of
* following properties:
*
* - str - specify initial ASN.1 value(V) by a string (ex.'130430235959Z')
* - hex - specify initial ASN.1 value(V) by a hexadecimal string
* - date - specify Date object.
*
* NOTE: 'params' can be omitted.
* EXAMPLES
* @example
* var d1 = new KJUR.asn1.DERUTCTime();
* d1.setString('130430125959Z');
*
* var d2 = new KJUR.asn1.DERUTCTime({'str': '130430125959Z'});
*
* var d3 = new KJUR.asn1.DERUTCTime({'date': new Date(Date.UTC(2015, 0, 31, 0, 0, 0, 0))});
*/
KJUR.asn1.DERUTCTime = function(params) {
KJUR.asn1.DERUTCTime.superclass.constructor.call(this, params)
this.hT = '17'
/**
* set value by a Date object
* @name setByDate
* @memberOf KJUR.asn1.DERUTCTime
* @function
* @param {Date} dateObject Date object to set ASN.1 value(V)
*/
this.setByDate = function(dateObject) {
this.hTLV = null
this.isModified = true
this.date = dateObject
this.s = this.formatDate(this.date, 'utc')
this.hV = stohex(this.s)
}
if (typeof params !== 'undefined') {
if (typeof params['str'] !== 'undefined') {
this.setString(params['str'])
} else if (typeof params['hex'] !== 'undefined') {
this.setStringHex(params['hex'])
} else if (typeof params['date'] !== 'undefined') {
this.setByDate(params['date'])
}
}
}
JSX.extend(KJUR.asn1.DERUTCTime, KJUR.asn1.DERAbstractTime)
// ********************************************************************
/**
* class for ASN.1 DER GeneralizedTime
* @name KJUR.asn1.DERGeneralizedTime
* @class class for ASN.1 DER GeneralizedTime
* @param {Array} params associative array of parameters (ex. {'str': '20130430235959Z'})
* @extends KJUR.asn1.DERAbstractTime
* @description
*
* As for argument 'params' for constructor, you can specify one of
* following properties:
*
* - str - specify initial ASN.1 value(V) by a string (ex.'20130430235959Z')
* - hex - specify initial ASN.1 value(V) by a hexadecimal string
* - date - specify Date object.
*
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERGeneralizedTime = function(params) {
KJUR.asn1.DERGeneralizedTime.superclass.constructor.call(this, params)
this.hT = '18'
/**
* set value by a Date object
* @name setByDate
* @memberOf KJUR.asn1.DERGeneralizedTime
* @function
* @param {Date} dateObject Date object to set ASN.1 value(V)
* @example
* When you specify UTC time, use 'Date.UTC' method like this:
* var o = new DERUTCTime();
* var date = new Date(Date.UTC(2015, 0, 31, 23, 59, 59, 0)); #2015JAN31 23:59:59
* o.setByDate(date);
*/
this.setByDate = function(dateObject) {
this.hTLV = null
this.isModified = true
this.date = dateObject
this.s = this.formatDate(this.date, 'gen')
this.hV = stohex(this.s)
}
if (typeof params !== 'undefined') {
if (typeof params['str'] !== 'undefined') {
this.setString(params['str'])
} else if (typeof params['hex'] !== 'undefined') {
this.setStringHex(params['hex'])
} else if (typeof params['date'] !== 'undefined') {
this.setByDate(params['date'])
}
}
}
JSX.extend(KJUR.asn1.DERGeneralizedTime, KJUR.asn1.DERAbstractTime)
// ********************************************************************
/**
* class for ASN.1 DER Sequence
* @name KJUR.asn1.DERSequence
* @class class for ASN.1 DER Sequence
* @extends KJUR.asn1.DERAbstractStructured
* @description
*
* As for argument 'params' for constructor, you can specify one of
* following properties:
*
* - array - specify array of ASN1Object to set elements of content
*
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERSequence = function(params) {
KJUR.asn1.DERSequence.superclass.constructor.call(this, params)
this.hT = '30'
this.getFreshValueHex = function() {
var h = ''
for (var i = 0; i < this.asn1Array.length; i++) {
var asn1Obj = this.asn1Array[i]
h += asn1Obj.getEncodedHex()
}
this.hV = h
return this.hV
}
}
JSX.extend(KJUR.asn1.DERSequence, KJUR.asn1.DERAbstractStructured)
// ********************************************************************
/**
* class for ASN.1 DER Set
* @name KJUR.asn1.DERSet
* @class class for ASN.1 DER Set
* @extends KJUR.asn1.DERAbstractStructured
* @description
*
* As for argument 'params' for constructor, you can specify one of
* following properties:
*
* - array - specify array of ASN1Object to set elements of content
*
* NOTE: 'params' can be omitted.
*/
KJUR.asn1.DERSet = function(params) {
KJUR.asn1.DERSet.superclass.constructor.call(this, params)
this.hT = '31'
this.getFreshValueHex = function() {
var a = new Array()
for (var i = 0; i < this.asn1Array.length; i++) {
var asn1Obj = this.asn1Array[i]
a.push(asn1Obj.getEncodedHex())
}
a.sort()
this.hV = a.join('')
return this.hV
}
}
JSX.extend(KJUR.asn1.DERSet, KJUR.asn1.DERAbstractStructured)
// ********************************************************************
/**
* class for ASN.1 DER TaggedObject
* @name KJUR.asn1.DERTaggedObject
* @class class for ASN.1 DER TaggedObject
* @extends KJUR.asn1.ASN1Object
* @description
*
* Parameter 'tagNoNex' is ASN.1 tag(T) value for this object.
* For example, if you find '[1]' tag in a ASN.1 dump,
* 'tagNoHex' will be 'a1'.
*
* As for optional argument 'params' for constructor, you can specify *ANY* of
* following properties:
*
* - explicit - specify true if this is explicit tag otherwise false
* (default is 'true').
* - tag - specify tag (default is 'a0' which means [0])
* - obj - specify ASN1Object which is tagged
*
* @example
* d1 = new KJUR.asn1.DERUTF8String({'str':'a'});
* d2 = new KJUR.asn1.DERTaggedObject({'obj': d1});
* hex = d2.getEncodedHex();
*/
KJUR.asn1.DERTaggedObject = function(params) {
KJUR.asn1.DERTaggedObject.superclass.constructor.call(this)
this.hT = 'a0'
this.hV = ''
this.isExplicit = true
this.asn1Object = null
/**
* set value by an ASN1Object
* @name setString
* @memberOf KJUR.asn1.DERTaggedObject
* @function
* @param {Boolean} isExplicitFlag flag for explicit/implicit tag
* @param {Integer} tagNoHex hexadecimal string of ASN.1 tag
* @param {ASN1Object} asn1Object ASN.1 to encapsulate
*/
this.setASN1Object = function(isExplicitFlag, tagNoHex, asn1Object) {
this.hT = tagNoHex
this.isExplicit = isExplicitFlag
this.asn1Object = asn1Object
if (this.isExplicit) {
this.hV = this.asn1Object.getEncodedHex()
this.hTLV = null
this.isModified = true
} else {
this.hV = null
this.hTLV = asn1Object.getEncodedHex()
this.hTLV = this.hTLV.replace(/^../, tagNoHex)
this.isModified = false
}
}
this.getFreshValueHex = function() {
return this.hV
}
if (typeof params !== 'undefined') {
if (typeof params['tag'] !== 'undefined') {
this.hT = params['tag']
}
if (typeof params['explicit'] !== 'undefined') {
this.isExplicit = params['explicit']
}
if (typeof params['obj'] !== 'undefined') {
this.asn1Object = params['obj']
this.setASN1Object(this.isExplicit, this.hT, this.asn1Object)
}
}
}
JSX.extend(KJUR.asn1.DERTaggedObject, KJUR.asn1.ASN1Object);// Hex JavaScript decoder
// Copyright (c) 2008-2013 Lapo Luchini
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
/* jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */
(function(undefined) {
'use strict'
var Hex = {}
var decoder
Hex.decode = function(a) {
var i
if (decoder === undefined) {
var hex = '0123456789ABCDEF'
var ignore = ' \f\n\r\t\u00A0\u2028\u2029'
decoder = []
for (i = 0; i < 16; ++i) { decoder[hex.charAt(i)] = i }
hex = hex.toLowerCase()
for (i = 10; i < 16; ++i) { decoder[hex.charAt(i)] = i }
for (i = 0; i < ignore.length; ++i) { decoder[ignore.charAt(i)] = -1 }
}
var out = []
var bits = 0
var char_count = 0
for (i = 0; i < a.length; ++i) {
var c = a.charAt(i)
if (c == '=') { break }
c = decoder[c]
if (c == -1) { continue }
if (c === undefined) { throw 'Illegal character at offset ' + i }
bits |= c
if (++char_count >= 2) {
out[out.length] = bits
bits = 0
char_count = 0
} else {
bits <<= 4
}
}
if (char_count) { throw 'Hex encoding incomplete: 4 bits missing' }
return out
}
// export globals
window.Hex = Hex
})();// Base64 JavaScript decoder
// Copyright (c) 2008-2013 Lapo Luchini
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
/* jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */
(function(undefined) {
'use strict'
var Base64 = {}
var decoder
Base64.decode = function(a) {
var i
if (decoder === undefined) {
var b64 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
var ignore = '= \f\n\r\t\u00A0\u2028\u2029'
decoder = []
for (i = 0; i < 64; ++i) { decoder[b64.charAt(i)] = i }
for (i = 0; i < ignore.length; ++i) { decoder[ignore.charAt(i)] = -1 }
}
var out = []
var bits = 0; var char_count = 0
for (i = 0; i < a.length; ++i) {
var c = a.charAt(i)
if (c == '=') { break }
c = decoder[c]
if (c == -1) { continue }
if (c === undefined) { throw 'Illegal character at offset ' + i }
bits |= c
if (++char_count >= 4) {
out[out.length] = (bits >> 16)
out[out.length] = (bits >> 8) & 0xFF
out[out.length] = bits & 0xFF
bits = 0
char_count = 0
} else {
bits <<= 6
}
}
switch (char_count) {
case 1:
throw 'Base64 encoding incomplete: at least 2 bits missing'
case 2:
out[out.length] = (bits >> 10)
break
case 3:
out[out.length] = (bits >> 16)
out[out.length] = (bits >> 8) & 0xFF
break
}
return out
}
Base64.re = /-----BEGIN [^-]+-----([A-Za-z0-9+\/=\s]+)-----END [^-]+-----|begin-base64[^\n]+\n([A-Za-z0-9+\/=\s]+)====/
Base64.unarmor = function(a) {
var m = Base64.re.exec(a)
if (m) {
if (m[1]) { a = m[1] } else if (m[2]) { a = m[2] } else { throw 'RegExp out of sync' }
}
return Base64.decode(a)
}
// export globals
window.Base64 = Base64
})();// ASN.1 JavaScript decoder
// Copyright (c) 2008-2013 Lapo Luchini
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
// ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
// ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
// OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
/* jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */
/*global oids */
(function(undefined) {
'use strict'
var hardLimit = 100
var ellipsis = '\u2026'
var DOM = {
tag: function(tagName, className) {
var t = document.createElement(tagName)
t.className = className
return t
},
text: function(str) {
return document.createTextNode(str)
}
}
function Stream(enc, pos) {
if (enc instanceof Stream) {
this.enc = enc.enc
this.pos = enc.pos
} else {
this.enc = enc
this.pos = pos
}
}
Stream.prototype.get = function(pos) {
if (pos === undefined) { pos = this.pos++ }
if (pos >= this.enc.length) { throw 'Requesting byte offset ' + pos + ' on a stream of length ' + this.enc.length }
return this.enc[pos]
}
Stream.prototype.hexDigits = '0123456789ABCDEF'
Stream.prototype.hexByte = function(b) {
return this.hexDigits.charAt((b >> 4) & 0xF) + this.hexDigits.charAt(b & 0xF)
}
Stream.prototype.hexDump = function(start, end, raw) {
var s = ''
for (var i = start; i < end; ++i) {
s += this.hexByte(this.get(i))
if (raw !== true) {
switch (i & 0xF) {
case 0x7: s += ' '; break
case 0xF: s += '\n'; break
default: s += ' '
}
}
}
return s
}
Stream.prototype.parseStringISO = function(start, end) {
var s = ''
for (var i = start; i < end; ++i) { s += String.fromCharCode(this.get(i)) }
return s
}
Stream.prototype.parseStringUTF = function(start, end) {
var s = ''
for (var i = start; i < end;) {
var c = this.get(i++)
if (c < 128) { s += String.fromCharCode(c) } else if ((c > 191) && (c < 224)) { s += String.fromCharCode(((c & 0x1F) << 6) | (this.get(i++) & 0x3F)) } else { s += String.fromCharCode(((c & 0x0F) << 12) | ((this.get(i++) & 0x3F) << 6) | (this.get(i++) & 0x3F)) }
}
return s
}
Stream.prototype.parseStringBMP = function(start, end) {
var str = ''
for (var i = start; i < end; i += 2) {
var high_byte = this.get(i)
var low_byte = this.get(i + 1)
str += String.fromCharCode((high_byte << 8) + low_byte)
}
return str
}
Stream.prototype.reTime = /^((?:1[89]|2\d)?\d\d)(0[1-9]|1[0-2])(0[1-9]|[12]\d|3[01])([01]\d|2[0-3])(?:([0-5]\d)(?:([0-5]\d)(?:[.,](\d{1,3}))?)?)?(Z|[-+](?:[0]\d|1[0-2])([0-5]\d)?)?$/
Stream.prototype.parseTime = function(start, end) {
var s = this.parseStringISO(start, end)
var m = this.reTime.exec(s)
if (!m) { return 'Unrecognized time: ' + s }
s = m[1] + '-' + m[2] + '-' + m[3] + ' ' + m[4]
if (m[5]) {
s += ':' + m[5]
if (m[6]) {
s += ':' + m[6]
if (m[7]) { s += '.' + m[7] }
}
}
if (m[8]) {
s += ' UTC'
if (m[8] != 'Z') {
s += m[8]
if (m[9]) { s += ':' + m[9] }
}
}
return s
}
Stream.prototype.parseInteger = function(start, end) {
// TODO support negative numbers
var len = end - start
if (len > 4) {
len <<= 3
var s = this.get(start)
if (s === 0) { len -= 8 } else {
while (s < 128) {
s <<= 1
--len
}
}
return '(' + len + ' bit)'
}
var n = 0
for (var i = start; i < end; ++i) { n = (n << 8) | this.get(i) }
return n
}
Stream.prototype.parseBitString = function(start, end) {
var unusedBit = this.get(start)
var lenBit = ((end - start - 1) << 3) - unusedBit
var s = '(' + lenBit + ' bit)'
if (lenBit <= 20) {
var skip = unusedBit
s += ' '
for (var i = end - 1; i > start; --i) {
var b = this.get(i)
for (var j = skip; j < 8; ++j) { s += (b >> j) & 1 ? '1' : '0' }
skip = 0
}
}
return s
}
Stream.prototype.parseOctetString = function(start, end) {
var len = end - start
var s = '(' + len + ' byte) '
if (len > hardLimit) { end = start + hardLimit }
for (var i = start; i < end; ++i) { s += this.hexByte(this.get(i)) } // TODO: also try Latin1?
if (len > hardLimit) { s += ellipsis }
return s
}
Stream.prototype.parseOID = function(start, end) {
var s = ''
var n = 0
var bits = 0
for (var i = start; i < end; ++i) {
var v = this.get(i)
n = (n << 7) | (v & 0x7F)
bits += 7
if (!(v & 0x80)) { // finished
if (s === '') {
var m = n < 80 ? n < 40 ? 0 : 1 : 2
s = m + '.' + (n - m * 40)
} else { s += '.' + ((bits >= 31) ? 'bigint' : n) }
n = bits = 0
}
}
return s
}
function ASN1(stream, header, length, tag, sub) {
this.stream = stream
this.header = header
this.length = length
this.tag = tag
this.sub = sub
}
ASN1.prototype.typeName = function() {
if (this.tag === undefined) { return 'unknown' }
var tagClass = this.tag >> 6
var tagConstructed = (this.tag >> 5) & 1
var tagNumber = this.tag & 0x1F
switch (tagClass) {
case 0: // universal
switch (tagNumber) {
case 0x00: return 'EOC'
case 0x01: return 'BOOLEAN'
case 0x02: return 'INTEGER'
case 0x03: return 'BIT_STRING'
case 0x04: return 'OCTET_STRING'
case 0x05: return 'NULL'
case 0x06: return 'OBJECT_IDENTIFIER'
case 0x07: return 'ObjectDescriptor'
case 0x08: return 'EXTERNAL'
case 0x09: return 'REAL'
case 0x0A: return 'ENUMERATED'
case 0x0B: return 'EMBEDDED_PDV'
case 0x0C: return 'UTF8String'
case 0x10: return 'SEQUENCE'
case 0x11: return 'SET'
case 0x12: return 'NumericString'
case 0x13: return 'PrintableString' // ASCII subset
case 0x14: return 'TeletexString' // aka T61String
case 0x15: return 'VideotexString'
case 0x16: return 'IA5String' // ASCII
case 0x17: return 'UTCTime'
case 0x18: return 'GeneralizedTime'
case 0x19: return 'GraphicString'
case 0x1A: return 'VisibleString' // ASCII subset
case 0x1B: return 'GeneralString'
case 0x1C: return 'UniversalString'
case 0x1E: return 'BMPString'
default: return 'Universal_' + tagNumber.toString(16)
}
case 1: return 'Application_' + tagNumber.toString(16)
case 2: return '[' + tagNumber + ']' // Context
case 3: return 'Private_' + tagNumber.toString(16)
}
}
ASN1.prototype.reSeemsASCII = /^[ -~]+$/
ASN1.prototype.content = function() {
if (this.tag === undefined) { return null }
var tagClass = this.tag >> 6
var tagNumber = this.tag & 0x1F
var content = this.posContent()
var len = Math.abs(this.length)
if (tagClass !== 0) { // universal
if (this.sub !== null) { return '(' + this.sub.length + ' elem)' }
// TODO: TRY TO PARSE ASCII STRING
var s = this.stream.parseStringISO(content, content + Math.min(len, hardLimit))
if (this.reSeemsASCII.test(s)) { return s.substring(0, 2 * hardLimit) + ((s.length > 2 * hardLimit) ? ellipsis : '') } else { return this.stream.parseOctetString(content, content + len) }
}
switch (tagNumber) {
case 0x01: // BOOLEAN
return (this.stream.get(content) === 0) ? 'false' : 'true'
case 0x02: // INTEGER
return this.stream.parseInteger(content, content + len)
case 0x03: // BIT_STRING
return this.sub ? '(' + this.sub.length + ' elem)'
: this.stream.parseBitString(content, content + len)
case 0x04: // OCTET_STRING
return this.sub ? '(' + this.sub.length + ' elem)'
: this.stream.parseOctetString(content, content + len)
// case 0x05: // NULL
case 0x06: // OBJECT_IDENTIFIER
return this.stream.parseOID(content, content + len)
// case 0x07: // ObjectDescriptor
// case 0x08: // EXTERNAL
// case 0x09: // REAL
// case 0x0A: // ENUMERATED
// case 0x0B: // EMBEDDED_PDV
case 0x10: // SEQUENCE
case 0x11: // SET
return '(' + this.sub.length + ' elem)'
case 0x0C: // UTF8String
return this.stream.parseStringUTF(content, content + len)
case 0x12: // NumericString
case 0x13: // PrintableString
case 0x14: // TeletexString
case 0x15: // VideotexString
case 0x16: // IA5String
// case 0x19: // GraphicString
case 0x1A: // VisibleString
// case 0x1B: // GeneralString
// case 0x1C: // UniversalString
return this.stream.parseStringISO(content, content + len)
case 0x1E: // BMPString
return this.stream.parseStringBMP(content, content + len)
case 0x17: // UTCTime
case 0x18: // GeneralizedTime
return this.stream.parseTime(content, content + len)
}
return null
}
ASN1.prototype.toString = function() {
return this.typeName() + '@' + this.stream.pos + '[header:' + this.header + ',length:' + this.length + ',sub:' + ((this.sub === null) ? 'null' : this.sub.length) + ']'
}
ASN1.prototype.print = function(indent) {
if (indent === undefined) indent = ''
document.writeln(indent + this)
if (this.sub !== null) {
indent += ' '
for (var i = 0, max = this.sub.length; i < max; ++i) { this.sub[i].print(indent) }
}
}
ASN1.prototype.toPrettyString = function(indent) {
if (indent === undefined) indent = ''
var s = indent + this.typeName() + ' @' + this.stream.pos
if (this.length >= 0) { s += '+' }
s += this.length
if (this.tag & 0x20) { s += ' (constructed)' } else if (((this.tag == 0x03) || (this.tag == 0x04)) && (this.sub !== null)) { s += ' (encapsulates)' }
s += '\n'
if (this.sub !== null) {
indent += ' '
for (var i = 0, max = this.sub.length; i < max; ++i) { s += this.sub[i].toPrettyString(indent) }
}
return s
}
ASN1.prototype.toDOM = function() {
var node = DOM.tag('div', 'node')
node.asn1 = this
var head = DOM.tag('div', 'head')
var s = this.typeName().replace(/_/g, ' ')
head.innerHTML = s
var content = this.content()
if (content !== null) {
content = String(content).replace(/'
s += 'Length: ' + this.header + '+'
if (this.length >= 0) { s += this.length } else { s += (-this.length) + ' (undefined)' }
if (this.tag & 0x20) { s += '
(constructed)' } else if (((this.tag == 0x03) || (this.tag == 0x04)) && (this.sub !== null)) { s += '
(encapsulates)' }
// TODO if (this.tag == 0x03) s += "Unused bits: "
if (content !== null) {
s += '
Value:
' + content + ''
if ((typeof oids === 'object') && (this.tag == 0x06)) {
var oid = oids[content]
if (oid) {
if (oid.d) s += '
' + oid.d
if (oid.c) s += '
' + oid.c
if (oid.w) s += '
(warning!)'
}
}
}
value.innerHTML = s
node.appendChild(value)
var sub = DOM.tag('div', 'sub')
if (this.sub !== null) {
for (var i = 0, max = this.sub.length; i < max; ++i) { sub.appendChild(this.sub[i].toDOM()) }
}
node.appendChild(sub)
head.onclick = function() {
node.className = (node.className == 'node collapsed') ? 'node' : 'node collapsed'
}
return node
}
ASN1.prototype.posStart = function() {
return this.stream.pos
}
ASN1.prototype.posContent = function() {
return this.stream.pos + this.header
}
ASN1.prototype.posEnd = function() {
return this.stream.pos + this.header + Math.abs(this.length)
}
ASN1.prototype.fakeHover = function(current) {
this.node.className += ' hover'
if (current) { this.head.className += ' hover' }
}
ASN1.prototype.fakeOut = function(current) {
var re = / ?hover/
this.node.className = this.node.className.replace(re, '')
if (current) { this.head.className = this.head.className.replace(re, '') }
}
ASN1.prototype.toHexDOM_sub = function(node, className, stream, start, end) {
if (start >= end) { return }
var sub = DOM.tag('span', className)
sub.appendChild(DOM.text(
stream.hexDump(start, end)))
node.appendChild(sub)
}
ASN1.prototype.toHexDOM = function(root) {
var node = DOM.tag('span', 'hex')
if (root === undefined) root = node
this.head.hexNode = node
this.head.onmouseover = function() { this.hexNode.className = 'hexCurrent' }
this.head.onmouseout = function() { this.hexNode.className = 'hex' }
node.asn1 = this
node.onmouseover = function() {
var current = !root.selected
if (current) {
root.selected = this.asn1
this.className = 'hexCurrent'
}
this.asn1.fakeHover(current)
}
node.onmouseout = function() {
var current = (root.selected == this.asn1)
this.asn1.fakeOut(current)
if (current) {
root.selected = null
this.className = 'hex'
}
}
this.toHexDOM_sub(node, 'tag', this.stream, this.posStart(), this.posStart() + 1)
this.toHexDOM_sub(node, (this.length >= 0) ? 'dlen' : 'ulen', this.stream, this.posStart() + 1, this.posContent())
if (this.sub === null) {
node.appendChild(DOM.text(
this.stream.hexDump(this.posContent(), this.posEnd())))
} else if (this.sub.length > 0) {
var first = this.sub[0]
var last = this.sub[this.sub.length - 1]
this.toHexDOM_sub(node, 'intro', this.stream, this.posContent(), first.posStart())
for (var i = 0, max = this.sub.length; i < max; ++i) { node.appendChild(this.sub[i].toHexDOM(root)) }
this.toHexDOM_sub(node, 'outro', this.stream, last.posEnd(), this.posEnd())
}
return node
}
ASN1.prototype.toHexString = function(root) {
return this.stream.hexDump(this.posStart(), this.posEnd(), true)
}
ASN1.decodeLength = function(stream) {
var buf = stream.get()
var len = buf & 0x7F
if (len == buf) { return len }
if (len > 3) { throw 'Length over 24 bits not supported at position ' + (stream.pos - 1) }
if (len === 0) { return -1 } // undefined
buf = 0
for (var i = 0; i < len; ++i) { buf = (buf << 8) | stream.get() }
return buf
}
ASN1.hasContent = function(tag, len, stream) {
if (tag & 0x20) // constructed
{ return true }
if ((tag < 0x03) || (tag > 0x04)) { return false }
var p = new Stream(stream)
if (tag == 0x03) p.get() // BitString unused bits, must be in [0, 7]
var subTag = p.get()
if ((subTag >> 6) & 0x01) // not (universal or context)
{ return false }
try {
var subLength = ASN1.decodeLength(p)
return ((p.pos - stream.pos) + subLength == len)
} catch (exception) {
return false
}
}
ASN1.decode = function(stream) {
if (!(stream instanceof Stream)) { stream = new Stream(stream, 0) }
var streamStart = new Stream(stream)
var tag = stream.get()
var len = ASN1.decodeLength(stream)
var header = stream.pos - streamStart.pos
var sub = null
if (ASN1.hasContent(tag, len, stream)) {
// it has content, so we decode it
var start = stream.pos
if (tag == 0x03) stream.get() // skip BitString unused bits, must be in [0, 7]
sub = []
if (len >= 0) {
// definite length
var end = start + len
while (stream.pos < end) { sub[sub.length] = ASN1.decode(stream) }
if (stream.pos != end) { throw 'Content size is not correct for container starting at offset ' + start }
} else {
// undefined length
try {
for (;;) {
var s = ASN1.decode(stream)
if (s.tag === 0) { break }
sub[sub.length] = s
}
len = start - stream.pos
} catch (e) {
throw 'Exception while decoding undefined length content: ' + e
}
}
} else { stream.pos += len } // skip content
return new ASN1(streamStart, header, len, tag, sub)
}
ASN1.test = function() {
var test = [
{ value: [0x27], expected: 0x27 },
{ value: [0x81, 0xC9], expected: 0xC9 },
{ value: [0x83, 0xFE, 0xDC, 0xBA], expected: 0xFEDCBA }
]
for (var i = 0, max = test.length; i < max; ++i) {
var pos = 0
var stream = new Stream(test[i].value, 0)
var res = ASN1.decodeLength(stream)
if (res != test[i].expected) { document.write('In test[' + i + '] expected ' + test[i].expected + ' got ' + res + '\n') }
}
}
// export globals
window.ASN1 = ASN1
})()/**
* Retrieve the hexadecimal value (as a string) of the current ASN.1 element
* @returns {string}
* @public
*/
ASN1.prototype.getHexStringValue = function() {
var hexString = this.toHexString()
var offset = this.header * 2
var length = this.length * 2
return hexString.substr(offset, length)
}
/**
* Method to parse a pem encoded string containing both a public or private key.
* The method will translate the pem encoded string in a der encoded string and
* will parse private key and public key parameters. This method accepts public key
* in the rsaencryption pkcs #1 format (oid: 1.2.840.113549.1.1.1).
*
* @todo Check how many rsa formats use the same format of pkcs #1.
*
* The format is defined as:
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
* it's possible to examine the structure of the keys obtained from openssl using
* an asn.1 dumper as the one used here to parse the components: http://lapo.it/asn1js/
* @argument {string} pem the pem encoded string, can include the BEGIN/END header/footer
* @private
*/
RSAKey.prototype.parseKey = function(pem) {
try {
var modulus = 0
var public_exponent = 0
var reHex = /^\s*(?:[0-9A-Fa-f][0-9A-Fa-f]\s*)+$/
var der = reHex.test(pem) ? Hex.decode(pem) : Base64.unarmor(pem)
var asn1 = ASN1.decode(der)
// Fixes a bug with OpenSSL 1.0+ private keys
if (asn1.sub.length === 3) {
asn1 = asn1.sub[2].sub[0]
}
if (asn1.sub.length === 9) {
// Parse the private key.
modulus = asn1.sub[1].getHexStringValue() // bigint
this.n = parseBigInt(modulus, 16)
public_exponent = asn1.sub[2].getHexStringValue() // int
this.e = parseInt(public_exponent, 16)
var private_exponent = asn1.sub[3].getHexStringValue() // bigint
this.d = parseBigInt(private_exponent, 16)
var prime1 = asn1.sub[4].getHexStringValue() // bigint
this.p = parseBigInt(prime1, 16)
var prime2 = asn1.sub[5].getHexStringValue() // bigint
this.q = parseBigInt(prime2, 16)
var exponent1 = asn1.sub[6].getHexStringValue() // bigint
this.dmp1 = parseBigInt(exponent1, 16)
var exponent2 = asn1.sub[7].getHexStringValue() // bigint
this.dmq1 = parseBigInt(exponent2, 16)
var coefficient = asn1.sub[8].getHexStringValue() // bigint
this.coeff = parseBigInt(coefficient, 16)
} else if (asn1.sub.length === 2) {
// Parse the public key.
var bit_string = asn1.sub[1]
var sequence = bit_string.sub[0]
modulus = sequence.sub[0].getHexStringValue()
this.n = parseBigInt(modulus, 16)
public_exponent = sequence.sub[1].getHexStringValue()
this.e = parseInt(public_exponent, 16)
} else {
return false
}
return true
} catch (ex) {
return false
}
}
/**
* Translate rsa parameters in a hex encoded string representing the rsa key.
*
* The translation follow the ASN.1 notation :
* RSAPrivateKey ::= SEQUENCE {
* version Version,
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* }
* @returns {string} DER Encoded String representing the rsa private key
* @private
*/
RSAKey.prototype.getPrivateBaseKey = function() {
var options = {
'array': [
new KJUR.asn1.DERInteger({ 'int': 0 }),
new KJUR.asn1.DERInteger({ 'bigint': this.n }),
new KJUR.asn1.DERInteger({ 'int': this.e }),
new KJUR.asn1.DERInteger({ 'bigint': this.d }),
new KJUR.asn1.DERInteger({ 'bigint': this.p }),
new KJUR.asn1.DERInteger({ 'bigint': this.q }),
new KJUR.asn1.DERInteger({ 'bigint': this.dmp1 }),
new KJUR.asn1.DERInteger({ 'bigint': this.dmq1 }),
new KJUR.asn1.DERInteger({ 'bigint': this.coeff })
]
}
var seq = new KJUR.asn1.DERSequence(options)
return seq.getEncodedHex()
}
/**
* base64 (pem) encoded version of the DER encoded representation
* @returns {string} pem encoded representation without header and footer
* @public
*/
RSAKey.prototype.getPrivateBaseKeyB64 = function() {
return hex2b64(this.getPrivateBaseKey())
}
/**
* Translate rsa parameters in a hex encoded string representing the rsa public key.
* The representation follow the ASN.1 notation :
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
* @returns {string} DER Encoded String representing the rsa public key
* @private
*/
RSAKey.prototype.getPublicBaseKey = function() {
var options = {
'array': [
new KJUR.asn1.DERObjectIdentifier({ 'oid': '1.2.840.113549.1.1.1' }), // RSA Encryption pkcs #1 oid
new KJUR.asn1.DERNull()
]
}
var first_sequence = new KJUR.asn1.DERSequence(options)
options = {
'array': [
new KJUR.asn1.DERInteger({ 'bigint': this.n }),
new KJUR.asn1.DERInteger({ 'int': this.e })
]
}
var second_sequence = new KJUR.asn1.DERSequence(options)
options = {
'hex': '00' + second_sequence.getEncodedHex()
}
var bit_string = new KJUR.asn1.DERBitString(options)
options = {
'array': [
first_sequence,
bit_string
]
}
var seq = new KJUR.asn1.DERSequence(options)
return seq.getEncodedHex()
}
/**
* base64 (pem) encoded version of the DER encoded representation
* @returns {string} pem encoded representation without header and footer
* @public
*/
RSAKey.prototype.getPublicBaseKeyB64 = function() {
return hex2b64(this.getPublicBaseKey())
}
/**
* wrap the string in block of width chars. The default value for rsa keys is 64
* characters.
* @param {string} str the pem encoded string without header and footer
* @param {Number} [width=64] - the length the string has to be wrapped at
* @returns {string}
* @private
*/
RSAKey.prototype.wordwrap = function(str, width) {
width = width || 64
if (!str) {
return str
}
var regex = '(.{1,' + width + '})( +|$\n?)|(.{1,' + width + '})'
return str.match(RegExp(regex, 'g')).join('\n')
}
/**
* Retrieve the pem encoded private key
* @returns {string} the pem encoded private key with header/footer
* @public
*/
RSAKey.prototype.getPrivateKey = function() {
var key = '-----BEGIN RSA PRIVATE KEY-----\n'
key += this.wordwrap(this.getPrivateBaseKeyB64()) + '\n'
key += '-----END RSA PRIVATE KEY-----'
return key
}
/**
* Retrieve the pem encoded public key
* @returns {string} the pem encoded public key with header/footer
* @public
*/
RSAKey.prototype.getPublicKey = function() {
var key = '-----BEGIN PUBLIC KEY-----\n'
key += this.wordwrap(this.getPublicBaseKeyB64()) + '\n'
key += '-----END PUBLIC KEY-----'
return key
}
/**
* Check if the object contains the necessary parameters to populate the rsa modulus
* and public exponent parameters.
* @param {Object} [obj={}] - An object that may contain the two public key
* parameters
* @returns {boolean} true if the object contains both the modulus and the public exponent
* properties (n and e)
* @todo check for types of n and e. N should be a parseable bigInt object, E should
* be a parseable integer number
* @private
*/
RSAKey.prototype.hasPublicKeyProperty = function(obj) {
obj = obj || {}
return (
obj.hasOwnProperty('n') &&
obj.hasOwnProperty('e')
)
}
/**
* Check if the object contains ALL the parameters of an RSA key.
* @param {Object} [obj={}] - An object that may contain nine rsa key
* parameters
* @returns {boolean} true if the object contains all the parameters needed
* @todo check for types of the parameters all the parameters but the public exponent
* should be parseable bigint objects, the public exponent should be a parseable integer number
* @private
*/
RSAKey.prototype.hasPrivateKeyProperty = function(obj) {
obj = obj || {}
return (
obj.hasOwnProperty('n') &&
obj.hasOwnProperty('e') &&
obj.hasOwnProperty('d') &&
obj.hasOwnProperty('p') &&
obj.hasOwnProperty('q') &&
obj.hasOwnProperty('dmp1') &&
obj.hasOwnProperty('dmq1') &&
obj.hasOwnProperty('coeff')
)
}
/**
* Parse the properties of obj in the current rsa object. Obj should AT LEAST
* include the modulus and public exponent (n, e) parameters.
* @param {Object} obj - the object containing rsa parameters
* @private
*/
RSAKey.prototype.parsePropertiesFrom = function(obj) {
this.n = obj.n
this.e = obj.e
if (obj.hasOwnProperty('d')) {
this.d = obj.d
this.p = obj.p
this.q = obj.q
this.dmp1 = obj.dmp1
this.dmq1 = obj.dmq1
this.coeff = obj.coeff
}
}
/**
* Create a new JSEncryptRSAKey that extends Tom Wu's RSA key object.
* This object is just a decorator for parsing the key parameter
* @param {string|Object} key - The key in string format, or an object containing
* the parameters needed to build a RSAKey object.
* @constructor
*/
var JSEncryptRSAKey = function(key) {
// Call the super constructor.
RSAKey.call(this)
// If a key key was provided.
if (key) {
// If this is a string...
if (typeof key === 'string') {
this.parseKey(key)
} else if (
this.hasPrivateKeyProperty(key) ||
this.hasPublicKeyProperty(key)
) {
// Set the values for the key.
this.parsePropertiesFrom(key)
}
}
}
// Derive from RSAKey.
JSEncryptRSAKey.prototype = new RSAKey()
// Reset the contructor.
JSEncryptRSAKey.prototype.constructor = JSEncryptRSAKey
/**
*
* @param {Object} [options = {}] - An object to customize JSEncrypt behaviour
* possible parameters are:
* - default_key_size {number} default: 1024 the key size in bit
* - default_public_exponent {string} default: '010001' the hexadecimal representation of the public exponent
* - log {boolean} default: false whether log warn/error or not
* @constructor
*/
var JSEncrypt = function(options) {
options = options || {}
this.default_key_size = parseInt(options.default_key_size) || 1024
this.default_public_exponent = options.default_public_exponent || '010001' // 65537 default openssl public exponent for rsa key type
this.log = options.log || false
// The private and public key.
this.key = null
}
/**
* Method to set the rsa key parameter (one method is enough to set both the public
* and the private key, since the private key contains the public key paramenters)
* Log a warning if logs are enabled
* @param {Object|string} key the pem encoded string or an object (with or without header/footer)
* @public
*/
JSEncrypt.prototype.setKey = function(key) {
if (this.log && this.key) {
console.warn('A key was already set, overriding existing.')
}
this.key = new JSEncryptRSAKey(key)
}
/**
* Proxy method for setKey, for api compatibility
* @see setKey
* @public
*/
JSEncrypt.prototype.setPrivateKey = function(privkey) {
// Create the key.
this.setKey(privkey)
}
/**
* Proxy method for setKey, for api compatibility
* @see setKey
* @public
*/
JSEncrypt.prototype.setPublicKey = function(pubkey) {
// Sets the public key.
this.setKey(pubkey)
}
/**
* Proxy method for RSAKey object's decrypt, decrypt the string using the private
* components of the rsa key object. Note that if the object was not set will be created
* on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor
* @param {string} string base64 encoded crypted string to decrypt
* @return {string} the decrypted string
* @public
*/
JSEncrypt.prototype.decrypt = function(string) {
// Return the decrypted string.
try {
return this.getKey().decrypt(b64tohex(string))
} catch (ex) {
return false
}
}
/**
* Proxy method for RSAKey object's encrypt, encrypt the string using the public
* components of the rsa key object. Note that if the object was not set will be created
* on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor
* @param {string} string the string to encrypt
* @return {string} the encrypted string encoded in base64
* @public
*/
JSEncrypt.prototype.encrypt = function(string) {
// Return the encrypted string.
try {
return hex2b64(this.getKey().encrypt(string))
} catch (ex) {
return false
}
}
/**
* Getter for the current JSEncryptRSAKey object. If it doesn't exists a new object
* will be created and returned
* @param {callback} [cb] the callback to be called if we want the key to be generated
* in an async fashion
* @returns {JSEncryptRSAKey} the JSEncryptRSAKey object
* @public
*/
JSEncrypt.prototype.getKey = function(cb) {
// Only create new if it does not exist.
if (!this.key) {
// Get a new private key.
this.key = new JSEncryptRSAKey()
if (cb && {}.toString.call(cb) === '[object Function]') {
this.key.generateAsync(this.default_key_size, this.default_public_exponent, cb)
return
}
// Generate the key.
this.key.generate(this.default_key_size, this.default_public_exponent)
}
return this.key
}
/**
* Returns the pem encoded representation of the private key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the private key WITH header and footer
* @public
*/
JSEncrypt.prototype.getPrivateKey = function() {
// Return the private representation of this key.
return this.getKey().getPrivateKey()
}
/**
* Returns the pem encoded representation of the private key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the private key WITHOUT header and footer
* @public
*/
JSEncrypt.prototype.getPrivateKeyB64 = function() {
// Return the private representation of this key.
return this.getKey().getPrivateBaseKeyB64()
}
/**
* Returns the pem encoded representation of the public key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the public key WITH header and footer
* @public
*/
JSEncrypt.prototype.getPublicKey = function() {
// Return the private representation of this key.
return this.getKey().getPublicKey()
}
/**
* Returns the pem encoded representation of the public key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the public key WITHOUT header and footer
* @public
*/
JSEncrypt.prototype.getPublicKeyB64 = function() {
// Return the private representation of this key.
return this.getKey().getPublicBaseKeyB64()
}
exports.JSEncrypt = JSEncrypt
})(JSEncryptExports)
var JSEncrypt = JSEncryptExports.JSEncrypt