var JSEncryptExports = {}; (function(exports) { // Copyright (c) 2005 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Basic JavaScript BN library - subset useful for RSA encryption. // Bits per digit var dbits // JavaScript engine analysis var canary = 0xdeadbeefcafe var j_lm = ((canary & 0xffffff) == 0xefcafe) // (public) Constructor function BigInteger(a, b, c) { if (a != null) { if (typeof a === 'number') this.fromNumber(a, b, c) else if (b == null && typeof a !== 'string') this.fromString(a, 256) else this.fromString(a, b) } } // return new, unset BigInteger function nbi() { return new BigInteger(null) } // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i, x, w, j, c, n) { while (--n >= 0) { var v = x * this[i++] + w[j] + c c = Math.floor(v / 0x4000000) w[j++] = v & 0x3ffffff } return c } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i, x, w, j, c, n) { var xl = x & 0x7fff; var xh = x >> 15 while (--n >= 0) { var l = this[i] & 0x7fff var h = this[i++] >> 15 var m = xh * l + h * xl l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff) c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30) w[j++] = l & 0x3fffffff } return c } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i, x, w, j, c, n) { var xl = x & 0x3fff; var xh = x >> 14 while (--n >= 0) { var l = this[i] & 0x3fff var h = this[i++] >> 14 var m = xh * l + h * xl l = xl * l + ((m & 0x3fff) << 14) + w[j] + c c = (l >> 28) + (m >> 14) + xh * h w[j++] = l & 0xfffffff } return c } if (j_lm && (navigator.appName == 'Microsoft Internet Explorer')) { BigInteger.prototype.am = am2 dbits = 30 } else if (j_lm && (navigator.appName != 'Netscape')) { BigInteger.prototype.am = am1 dbits = 26 } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3 dbits = 28 } BigInteger.prototype.DB = dbits BigInteger.prototype.DM = ((1 << dbits) - 1) BigInteger.prototype.DV = (1 << dbits) var BI_FP = 52 BigInteger.prototype.FV = Math.pow(2, BI_FP) BigInteger.prototype.F1 = BI_FP - dbits BigInteger.prototype.F2 = 2 * dbits - BI_FP // Digit conversions var BI_RM = '0123456789abcdefghijklmnopqrstuvwxyz' var BI_RC = new Array() var rr, vv rr = '0'.charCodeAt(0) for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv rr = 'a'.charCodeAt(0) for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv rr = 'A'.charCodeAt(0) for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv function int2char(n) { return BI_RM.charAt(n) } function intAt(s, i) { var c = BI_RC[s.charCodeAt(i)] return (c == null) ? -1 : c } // (protected) copy this to r function bnpCopyTo(r) { for (var i = this.t - 1; i >= 0; --i) r[i] = this[i] r.t = this.t r.s = this.s } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1 this.s = (x < 0) ? -1 : 0 if (x > 0) this[0] = x else if (x < -1) this[0] = x + this.DV else this.t = 0 } // return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r } // (protected) set from string and radix function bnpFromString(s, b) { var k if (b == 16) k = 4 else if (b == 8) k = 3 else if (b == 256) k = 8 // byte array else if (b == 2) k = 1 else if (b == 32) k = 5 else if (b == 4) k = 2 else { this.fromRadix(s, b); return } this.t = 0 this.s = 0 var i = s.length; var mi = false; var sh = 0 while (--i >= 0) { var x = (k == 8) ? s[i] & 0xff : intAt(s, i) if (x < 0) { if (s.charAt(i) == '-') mi = true continue } mi = false if (sh == 0) { this[this.t++] = x } else if (sh + k > this.DB) { this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh this[this.t++] = (x >> (this.DB - sh)) } else { this[this.t - 1] |= x << sh } sh += k if (sh >= this.DB) sh -= this.DB } if (k == 8 && (s[0] & 0x80) != 0) { this.s = -1 if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh } this.clamp() if (mi) BigInteger.ZERO.subTo(this, this) } // (protected) clamp off excess high words function bnpClamp() { var c = this.s & this.DM while (this.t > 0 && this[this.t - 1] == c) --this.t } // (public) return string representation in given radix function bnToString(b) { if (this.s < 0) return '-' + this.negate().toString(b) var k if (b == 16) k = 4 else if (b == 8) k = 3 else if (b == 2) k = 1 else if (b == 32) k = 5 else if (b == 4) k = 2 else return this.toRadix(b) var km = (1 << k) - 1; var d; var m = false; var r = ''; var i = this.t var p = this.DB - (i * this.DB) % k if (i-- > 0) { if (p < this.DB && (d = this[i] >> p) > 0) { m = true; r = int2char(d) } while (i >= 0) { if (p < k) { d = (this[i] & ((1 << p) - 1)) << (k - p) d |= this[--i] >> (p += this.DB - k) } else { d = (this[i] >> (p -= k)) & km if (p <= 0) { p += this.DB; --i } } if (d > 0) m = true if (m) r += int2char(d) } } return m ? r : '0' } // (public) -this function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this, r); return r } // (public) |this| function bnAbs() { return (this.s < 0) ? this.negate() : this } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s - a.s if (r != 0) return r var i = this.t r = i - a.t if (r != 0) return (this.s < 0) ? -r : r while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r return 0 } // returns bit length of the integer x function nbits(x) { var r = 1; var t if ((t = x >>> 16) != 0) { x = t; r += 16 } if ((t = x >> 8) != 0) { x = t; r += 8 } if ((t = x >> 4) != 0) { x = t; r += 4 } if ((t = x >> 2) != 0) { x = t; r += 2 } if ((t = x >> 1) != 0) { x = t; r += 1 } return r } // (public) return the number of bits in "this" function bnBitLength() { if (this.t <= 0) return 0 return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM)) } // (protected) r = this << n*DB function bnpDLShiftTo(n, r) { var i for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i] for (i = n - 1; i >= 0; --i) r[i] = 0 r.t = this.t + n r.s = this.s } // (protected) r = this >> n*DB function bnpDRShiftTo(n, r) { for (var i = n; i < this.t; ++i) r[i - n] = this[i] r.t = Math.max(this.t - n, 0) r.s = this.s } // (protected) r = this << n function bnpLShiftTo(n, r) { var bs = n % this.DB var cbs = this.DB - bs var bm = (1 << cbs) - 1 var ds = Math.floor(n / this.DB); var c = (this.s << bs) & this.DM; var i for (i = this.t - 1; i >= 0; --i) { r[i + ds + 1] = (this[i] >> cbs) | c c = (this[i] & bm) << bs } for (i = ds - 1; i >= 0; --i) r[i] = 0 r[ds] = c r.t = this.t + ds + 1 r.s = this.s r.clamp() } // (protected) r = this >> n function bnpRShiftTo(n, r) { r.s = this.s var ds = Math.floor(n / this.DB) if (ds >= this.t) { r.t = 0; return } var bs = n % this.DB var cbs = this.DB - bs var bm = (1 << bs) - 1 r[0] = this[ds] >> bs for (var i = ds + 1; i < this.t; ++i) { r[i - ds - 1] |= (this[i] & bm) << cbs r[i - ds] = this[i] >> bs } if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs r.t = this.t - ds r.clamp() } // (protected) r = this - a function bnpSubTo(a, r) { var i = 0; var c = 0; var m = Math.min(a.t, this.t) while (i < m) { c += this[i] - a[i] r[i++] = c & this.DM c >>= this.DB } if (a.t < this.t) { c -= a.s while (i < this.t) { c += this[i] r[i++] = c & this.DM c >>= this.DB } c += this.s } else { c += this.s while (i < a.t) { c -= a[i] r[i++] = c & this.DM c >>= this.DB } c -= a.s } r.s = (c < 0) ? -1 : 0 if (c < -1) r[i++] = this.DV + c else if (c > 0) r[i++] = c r.t = i r.clamp() } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a, r) { var x = this.abs(); var y = a.abs() var i = x.t r.t = i + y.t while (--i >= 0) r[i] = 0 for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t) r.s = 0 r.clamp() if (this.s != a.s) BigInteger.ZERO.subTo(r, r) } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs() var i = r.t = 2 * x.t while (--i >= 0) r[i] = 0 for (i = 0; i < x.t - 1; ++i) { var c = x.am(i, x[i], r, 2 * i, 0, 1) if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) { r[i + x.t] -= x.DV r[i + x.t + 1] = 1 } } if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1) r.s = 0 r.clamp() } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m, q, r) { var pm = m.abs() if (pm.t <= 0) return var pt = this.abs() if (pt.t < pm.t) { if (q != null) q.fromInt(0) if (r != null) this.copyTo(r) return } if (r == null) r = nbi() var y = nbi(); var ts = this.s; var ms = m.s var nsh = this.DB - nbits(pm[pm.t - 1]) // normalize modulus if (nsh > 0) { pm.lShiftTo(nsh, y); pt.lShiftTo(nsh, r) } else { pm.copyTo(y); pt.copyTo(r) } var ys = y.t var y0 = y[ys - 1] if (y0 == 0) return var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0) var d1 = this.FV / yt; var d2 = (1 << this.F1) / yt; var e = 1 << this.F2 var i = r.t; var j = i - ys; var t = (q == null) ? nbi() : q y.dlShiftTo(j, t) if (r.compareTo(t) >= 0) { r[r.t++] = 1 r.subTo(t, r) } BigInteger.ONE.dlShiftTo(ys, t) t.subTo(y, y) // "negative" y so we can replace sub with am later while (y.t < ys) y[y.t++] = 0 while (--j >= 0) { // Estimate quotient digit var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2) if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out y.dlShiftTo(j, t) r.subTo(t, r) while (r[i] < --qd) r.subTo(t, r) } } if (q != null) { r.drShiftTo(ys, q) if (ts != ms) BigInteger.ZERO.subTo(q, q) } r.t = ys r.clamp() if (nsh > 0) r.rShiftTo(nsh, r) // Denormalize remainder if (ts < 0) BigInteger.ZERO.subTo(r, r) } // (public) this mod a function bnMod(a) { var r = nbi() this.abs().divRemTo(a, null, r) if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r) return r } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m } function cConvert(x) { if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m) else return x } function cRevert(x) { return x } function cReduce(x) { x.divRemTo(this.m, null, x) } function cMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r) } function cSqrTo(x, r) { x.squareTo(r); this.reduce(r) } Classic.prototype.convert = cConvert Classic.prototype.revert = cRevert Classic.prototype.reduce = cReduce Classic.prototype.mulTo = cMulTo Classic.prototype.sqrTo = cSqrTo // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if (this.t < 1) return 0 var x = this[0] if ((x & 1) == 0) return 0 var y = x & 3 // y == 1/x mod 2^2 y = (y * (2 - (x & 0xf) * y)) & 0xf // y == 1/x mod 2^4 y = (y * (2 - (x & 0xff) * y)) & 0xff // y == 1/x mod 2^8 y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y * (2 - x * y % this.DV)) % this.DV // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y > 0) ? this.DV - y : -y } // Montgomery reduction function Montgomery(m) { this.m = m this.mp = m.invDigit() this.mpl = this.mp & 0x7fff this.mph = this.mp >> 15 this.um = (1 << (m.DB - 15)) - 1 this.mt2 = 2 * m.t } // xR mod m function montConvert(x) { var r = nbi() x.abs().dlShiftTo(this.m.t, r) r.divRemTo(this.m, null, r) if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r) return r } // x/R mod m function montRevert(x) { var r = nbi() x.copyTo(r) this.reduce(r) return r } // x = x/R mod m (HAC 14.32) function montReduce(x) { while (x.t <= this.mt2) // pad x so am has enough room later { x[x.t++] = 0 } for (var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i] & 0x7fff var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM // use am to combine the multiply-shift-add into one call j = i + this.m.t x[j] += this.m.am(0, u0, x, i, 0, this.m.t) // propagate carry while (x[j] >= x.DV) { x[j] -= x.DV; x[++j]++ } } x.clamp() x.drShiftTo(this.m.t, x) if (x.compareTo(this.m) >= 0) x.subTo(this.m, x) } // r = "x^2/R mod m"; x != r function montSqrTo(x, r) { x.squareTo(r); this.reduce(r) } // r = "xy/R mod m"; x,y != r function montMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r) } Montgomery.prototype.convert = montConvert Montgomery.prototype.revert = montRevert Montgomery.prototype.reduce = montReduce Montgomery.prototype.mulTo = montMulTo Montgomery.prototype.sqrTo = montSqrTo // (protected) true iff this is even function bnpIsEven() { return ((this.t > 0) ? (this[0] & 1) : this.s) == 0 } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e, z) { if (e > 0xffffffff || e < 1) return BigInteger.ONE var r = nbi(); var r2 = nbi(); var g = z.convert(this); var i = nbits(e) - 1 g.copyTo(r) while (--i >= 0) { z.sqrTo(r, r2) if ((e & (1 << i)) > 0) z.mulTo(r2, g, r) else { var t = r; r = r2; r2 = t } } return z.revert(r) } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e, m) { var z if (e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m) return this.exp(e, z) } // protected BigInteger.prototype.copyTo = bnpCopyTo BigInteger.prototype.fromInt = bnpFromInt BigInteger.prototype.fromString = bnpFromString BigInteger.prototype.clamp = bnpClamp BigInteger.prototype.dlShiftTo = bnpDLShiftTo BigInteger.prototype.drShiftTo = bnpDRShiftTo BigInteger.prototype.lShiftTo = bnpLShiftTo BigInteger.prototype.rShiftTo = bnpRShiftTo BigInteger.prototype.subTo = bnpSubTo BigInteger.prototype.multiplyTo = bnpMultiplyTo BigInteger.prototype.squareTo = bnpSquareTo BigInteger.prototype.divRemTo = bnpDivRemTo BigInteger.prototype.invDigit = bnpInvDigit BigInteger.prototype.isEven = bnpIsEven BigInteger.prototype.exp = bnpExp // public BigInteger.prototype.toString = bnToString BigInteger.prototype.negate = bnNegate BigInteger.prototype.abs = bnAbs BigInteger.prototype.compareTo = bnCompareTo BigInteger.prototype.bitLength = bnBitLength BigInteger.prototype.mod = bnMod BigInteger.prototype.modPowInt = bnModPowInt // "constants" BigInteger.ZERO = nbv(0) BigInteger.ONE = nbv(1) // Copyright (c) 2005-2009 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Extended JavaScript BN functions, required for RSA private ops. // Version 1.1: new BigInteger("0", 10) returns "proper" zero // Version 1.2: square() API, isProbablePrime fix // (public) function bnClone() { var r = nbi(); this.copyTo(r); return r } // (public) return value as integer function bnIntValue() { if (this.s < 0) { if (this.t == 1) return this[0] - this.DV else if (this.t == 0) return -1 } else if (this.t == 1) return this[0] else if (this.t == 0) return 0 // assumes 16 < DB < 32 return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0] } // (public) return value as byte function bnByteValue() { return (this.t == 0) ? this.s : (this[0] << 24) >> 24 } // (public) return value as short (assumes DB>=16) function bnShortValue() { return (this.t == 0) ? this.s : (this[0] << 16) >> 16 } // (protected) return x s.t. r^x < DV function bnpChunkSize(r) { return Math.floor(Math.LN2 * this.DB / Math.log(r)) } // (public) 0 if this == 0, 1 if this > 0 function bnSigNum() { if (this.s < 0) return -1 else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0 else return 1 } // (protected) convert to radix string function bnpToRadix(b) { if (b == null) b = 10 if (this.signum() == 0 || b < 2 || b > 36) return '0' var cs = this.chunkSize(b) var a = Math.pow(b, cs) var d = nbv(a); var y = nbi(); var z = nbi(); var r = '' this.divRemTo(d, y, z) while (y.signum() > 0) { r = (a + z.intValue()).toString(b).substr(1) + r y.divRemTo(d, y, z) } return z.intValue().toString(b) + r } // (protected) convert from radix string function bnpFromRadix(s, b) { this.fromInt(0) if (b == null) b = 10 var cs = this.chunkSize(b) var d = Math.pow(b, cs); var mi = false; var j = 0; var w = 0 for (var i = 0; i < s.length; ++i) { var x = intAt(s, i) if (x < 0) { if (s.charAt(i) == '-' && this.signum() == 0) mi = true continue } w = b * w + x if (++j >= cs) { this.dMultiply(d) this.dAddOffset(w, 0) j = 0 w = 0 } } if (j > 0) { this.dMultiply(Math.pow(b, j)) this.dAddOffset(w, 0) } if (mi) BigInteger.ZERO.subTo(this, this) } // (protected) alternate constructor function bnpFromNumber(a, b, c) { if (typeof b === 'number') { // new BigInteger(int,int,RNG) if (a < 2) this.fromInt(1) else { this.fromNumber(a, c) if (!this.testBit(a - 1)) // force MSB set { this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this) } if (this.isEven()) this.dAddOffset(1, 0) // force odd while (!this.isProbablePrime(b)) { this.dAddOffset(2, 0) if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1), this) } } } else { // new BigInteger(int,RNG) var x = new Array(); var t = a & 7 x.length = (a >> 3) + 1 b.nextBytes(x) if (t > 0) x[0] &= ((1 << t) - 1); else x[0] = 0 this.fromString(x, 256) } } // (public) convert to bigendian byte array function bnToByteArray() { var i = this.t; var r = new Array() r[0] = this.s var p = this.DB - (i * this.DB) % 8; var d; var k = 0 if (i-- > 0) { if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p) { r[k++] = d | (this.s << (this.DB - p)) } while (i >= 0) { if (p < 8) { d = (this[i] & ((1 << p) - 1)) << (8 - p) d |= this[--i] >> (p += this.DB - 8) } else { d = (this[i] >> (p -= 8)) & 0xff if (p <= 0) { p += this.DB; --i } } if ((d & 0x80) != 0) d |= -256 if (k == 0 && (this.s & 0x80) != (d & 0x80)) ++k if (k > 0 || d != this.s) r[k++] = d } } return r } function bnEquals(a) { return (this.compareTo(a) == 0) } function bnMin(a) { return (this.compareTo(a) < 0) ? this : a } function bnMax(a) { return (this.compareTo(a) > 0) ? this : a } // (protected) r = this op a (bitwise) function bnpBitwiseTo(a, op, r) { var i; var f; var m = Math.min(a.t, this.t) for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]) if (a.t < this.t) { f = a.s & this.DM for (i = m; i < this.t; ++i) r[i] = op(this[i], f) r.t = this.t } else { f = this.s & this.DM for (i = m; i < a.t; ++i) r[i] = op(f, a[i]) r.t = a.t } r.s = op(this.s, a.s) r.clamp() } // (public) this & a function op_and(x, y) { return x & y } function bnAnd(a) { var r = nbi(); this.bitwiseTo(a, op_and, r); return r } // (public) this | a function op_or(x, y) { return x | y } function bnOr(a) { var r = nbi(); this.bitwiseTo(a, op_or, r); return r } // (public) this ^ a function op_xor(x, y) { return x ^ y } function bnXor(a) { var r = nbi(); this.bitwiseTo(a, op_xor, r); return r } // (public) this & ~a function op_andnot(x, y) { return x & ~y } function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a, op_andnot, r); return r } // (public) ~this function bnNot() { var r = nbi() for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i] r.t = this.t r.s = ~this.s return r } // (public) this << n function bnShiftLeft(n) { var r = nbi() if (n < 0) this.rShiftTo(-n, r); else this.lShiftTo(n, r) return r } // (public) this >> n function bnShiftRight(n) { var r = nbi() if (n < 0) this.lShiftTo(-n, r); else this.rShiftTo(n, r) return r } // return index of lowest 1-bit in x, x < 2^31 function lbit(x) { if (x == 0) return -1 var r = 0 if ((x & 0xffff) == 0) { x >>= 16; r += 16 } if ((x & 0xff) == 0) { x >>= 8; r += 8 } if ((x & 0xf) == 0) { x >>= 4; r += 4 } if ((x & 3) == 0) { x >>= 2; r += 2 } if ((x & 1) == 0) ++r return r } // (public) returns index of lowest 1-bit (or -1 if none) function bnGetLowestSetBit() { for (var i = 0; i < this.t; ++i) { if (this[i] != 0) return i * this.DB + lbit(this[i]) } if (this.s < 0) return this.t * this.DB return -1 } // return number of 1 bits in x function cbit(x) { var r = 0 while (x != 0) { x &= x - 1; ++r } return r } // (public) return number of set bits function bnBitCount() { var r = 0; var x = this.s & this.DM for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x) return r } // (public) true iff nth bit is set function bnTestBit(n) { var j = Math.floor(n / this.DB) if (j >= this.t) return (this.s != 0) return ((this[j] & (1 << (n % this.DB))) != 0) } // (protected) this op (1<>= this.DB } if (a.t < this.t) { c += a.s while (i < this.t) { c += this[i] r[i++] = c & this.DM c >>= this.DB } c += this.s } else { c += this.s while (i < a.t) { c += a[i] r[i++] = c & this.DM c >>= this.DB } c += a.s } r.s = (c < 0) ? -1 : 0 if (c > 0) r[i++] = c else if (c < -1) r[i++] = this.DV + c r.t = i r.clamp() } // (public) this + a function bnAdd(a) { var r = nbi(); this.addTo(a, r); return r } // (public) this - a function bnSubtract(a) { var r = nbi(); this.subTo(a, r); return r } // (public) this * a function bnMultiply(a) { var r = nbi(); this.multiplyTo(a, r); return r } // (public) this^2 function bnSquare() { var r = nbi(); this.squareTo(r); return r } // (public) this / a function bnDivide(a) { var r = nbi(); this.divRemTo(a, r, null); return r } // (public) this % a function bnRemainder(a) { var r = nbi(); this.divRemTo(a, null, r); return r } // (public) [this/a,this%a] function bnDivideAndRemainder(a) { var q = nbi(); var r = nbi() this.divRemTo(a, q, r) return new Array(q, r) } // (protected) this *= n, this >= 0, 1 < n < DV function bnpDMultiply(n) { this[this.t] = this.am(0, n - 1, this, 0, 0, this.t) ++this.t this.clamp() } // (protected) this += n << w words, this >= 0 function bnpDAddOffset(n, w) { if (n == 0) return while (this.t <= w) this[this.t++] = 0 this[w] += n while (this[w] >= this.DV) { this[w] -= this.DV if (++w >= this.t) this[this.t++] = 0 ++this[w] } } // A "null" reducer function NullExp() {} function nNop(x) { return x } function nMulTo(x, y, r) { x.multiplyTo(y, r) } function nSqrTo(x, r) { x.squareTo(r) } NullExp.prototype.convert = nNop NullExp.prototype.revert = nNop NullExp.prototype.mulTo = nMulTo NullExp.prototype.sqrTo = nSqrTo // (public) this^e function bnPow(e) { return this.exp(e, new NullExp()) } // (protected) r = lower n words of "this * a", a.t <= n // "this" should be the larger one if appropriate. function bnpMultiplyLowerTo(a, n, r) { var i = Math.min(this.t + a.t, n) r.s = 0 // assumes a,this >= 0 r.t = i while (i > 0) r[--i] = 0 var j for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t) for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i) r.clamp() } // (protected) r = "this * a" without lower n words, n > 0 // "this" should be the larger one if appropriate. function bnpMultiplyUpperTo(a, n, r) { --n var i = r.t = this.t + a.t - n r.s = 0 // assumes a,this >= 0 while (--i >= 0) r[i] = 0 for (i = Math.max(n - this.t, 0); i < a.t; ++i) { r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n) } r.clamp() r.drShiftTo(1, r) } // Barrett modular reduction function Barrett(m) { // setup Barrett this.r2 = nbi() this.q3 = nbi() BigInteger.ONE.dlShiftTo(2 * m.t, this.r2) this.mu = this.r2.divide(m) this.m = m } function barrettConvert(x) { if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m) else if (x.compareTo(this.m) < 0) return x else { var r = nbi(); x.copyTo(r); this.reduce(r); return r } } function barrettRevert(x) { return x } // x = x mod m (HAC 14.42) function barrettReduce(x) { x.drShiftTo(this.m.t - 1, this.r2) if (x.t > this.m.t + 1) { x.t = this.m.t + 1; x.clamp() } this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3) this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2) while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1) x.subTo(this.r2, x) while (x.compareTo(this.m) >= 0) x.subTo(this.m, x) } // r = x^2 mod m; x != r function barrettSqrTo(x, r) { x.squareTo(r); this.reduce(r) } // r = x*y mod m; x,y != r function barrettMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r) } Barrett.prototype.convert = barrettConvert Barrett.prototype.revert = barrettRevert Barrett.prototype.reduce = barrettReduce Barrett.prototype.mulTo = barrettMulTo Barrett.prototype.sqrTo = barrettSqrTo // (public) this^e % m (HAC 14.85) function bnModPow(e, m) { var i = e.bitLength(); var k; var r = nbv(1); var z if (i <= 0) return r else if (i < 18) k = 1 else if (i < 48) k = 3 else if (i < 144) k = 4 else if (i < 768) k = 5 else k = 6 if (i < 8) { z = new Classic(m) } else if (m.isEven()) { z = new Barrett(m) } else { z = new Montgomery(m) } // precomputation var g = new Array(); var n = 3; var k1 = k - 1; var km = (1 << k) - 1 g[1] = z.convert(this) if (k > 1) { var g2 = nbi() z.sqrTo(g[1], g2) while (n <= km) { g[n] = nbi() z.mulTo(g2, g[n - 2], g[n]) n += 2 } } var j = e.t - 1; var w; var is1 = true; var r2 = nbi(); var t i = nbits(e[j]) - 1 while (j >= 0) { if (i >= k1) w = (e[j] >> (i - k1)) & km else { w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i) if (j > 0) w |= e[j - 1] >> (this.DB + i - k1) } n = k while ((w & 1) == 0) { w >>= 1; --n } if ((i -= n) < 0) { i += this.DB; --j } if (is1) { // ret == 1, don't bother squaring or multiplying it g[w].copyTo(r) is1 = false } else { while (n > 1) { z.sqrTo(r, r2); z.sqrTo(r2, r); n -= 2 } if (n > 0) z.sqrTo(r, r2); else { t = r; r = r2; r2 = t } z.mulTo(r2, g[w], r) } while (j >= 0 && (e[j] & (1 << i)) == 0) { z.sqrTo(r, r2); t = r; r = r2; r2 = t if (--i < 0) { i = this.DB - 1; --j } } } return z.revert(r) } // (public) gcd(this,a) (HAC 14.54) function bnGCD(a) { var x = (this.s < 0) ? this.negate() : this.clone() var y = (a.s < 0) ? a.negate() : a.clone() if (x.compareTo(y) < 0) { var t = x; x = y; y = t } var i = x.getLowestSetBit(); var g = y.getLowestSetBit() if (g < 0) return x if (i < g) g = i if (g > 0) { x.rShiftTo(g, x) y.rShiftTo(g, y) } while (x.signum() > 0) { if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x) if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y) if (x.compareTo(y) >= 0) { x.subTo(y, x) x.rShiftTo(1, x) } else { y.subTo(x, y) y.rShiftTo(1, y) } } if (g > 0) y.lShiftTo(g, y) return y } // (protected) this % n, n < 2^26 function bnpModInt(n) { if (n <= 0) return 0 var d = this.DV % n; var r = (this.s < 0) ? n - 1 : 0 if (this.t > 0) { if (d == 0) r = this[0] % n else for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n } return r } // (public) 1/this % m (HAC 14.61) function bnModInverse(m) { var ac = m.isEven() if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO var u = m.clone(); var v = this.clone() var a = nbv(1); var b = nbv(0); var c = nbv(0); var d = nbv(1) while (u.signum() != 0) { while (u.isEven()) { u.rShiftTo(1, u) if (ac) { if (!a.isEven() || !b.isEven()) { a.addTo(this, a); b.subTo(m, b) } a.rShiftTo(1, a) } else if (!b.isEven()) b.subTo(m, b) b.rShiftTo(1, b) } while (v.isEven()) { v.rShiftTo(1, v) if (ac) { if (!c.isEven() || !d.isEven()) { c.addTo(this, c); d.subTo(m, d) } c.rShiftTo(1, c) } else if (!d.isEven()) d.subTo(m, d) d.rShiftTo(1, d) } if (u.compareTo(v) >= 0) { u.subTo(v, u) if (ac) a.subTo(c, a) b.subTo(d, b) } else { v.subTo(u, v) if (ac) c.subTo(a, c) d.subTo(b, d) } } if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO if (d.compareTo(m) >= 0) return d.subtract(m) if (d.signum() < 0) d.addTo(m, d); else return d if (d.signum() < 0) return d.add(m); else return d } var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997] var lplim = (1 << 26) / lowprimes[lowprimes.length - 1] // (public) test primality with certainty >= 1-.5^t function bnIsProbablePrime(t) { var i; var x = this.abs() if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) { for (i = 0; i < lowprimes.length; ++i) { if (x[0] == lowprimes[i]) return true } return false } if (x.isEven()) return false i = 1 while (i < lowprimes.length) { var m = lowprimes[i]; var j = i + 1 while (j < lowprimes.length && m < lplim) m *= lowprimes[j++] m = x.modInt(m) while (i < j) if (m % lowprimes[i++] == 0) return false } return x.millerRabin(t) } // (protected) true if probably prime (HAC 4.24, Miller-Rabin) function bnpMillerRabin(t) { var n1 = this.subtract(BigInteger.ONE) var k = n1.getLowestSetBit() if (k <= 0) return false var r = n1.shiftRight(k) t = (t + 1) >> 1 if (t > lowprimes.length) t = lowprimes.length var a = nbi() for (var i = 0; i < t; ++i) { // Pick bases at random, instead of starting at 2 a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]) var y = a.modPow(r, this) if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { var j = 1 while (j++ < k && y.compareTo(n1) != 0) { y = y.modPowInt(2, this) if (y.compareTo(BigInteger.ONE) == 0) return false } if (y.compareTo(n1) != 0) return false } } return true } // protected BigInteger.prototype.chunkSize = bnpChunkSize BigInteger.prototype.toRadix = bnpToRadix BigInteger.prototype.fromRadix = bnpFromRadix BigInteger.prototype.fromNumber = bnpFromNumber BigInteger.prototype.bitwiseTo = bnpBitwiseTo BigInteger.prototype.changeBit = bnpChangeBit BigInteger.prototype.addTo = bnpAddTo BigInteger.prototype.dMultiply = bnpDMultiply BigInteger.prototype.dAddOffset = bnpDAddOffset BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo BigInteger.prototype.modInt = bnpModInt BigInteger.prototype.millerRabin = bnpMillerRabin // public BigInteger.prototype.clone = bnClone BigInteger.prototype.intValue = bnIntValue BigInteger.prototype.byteValue = bnByteValue BigInteger.prototype.shortValue = bnShortValue BigInteger.prototype.signum = bnSigNum BigInteger.prototype.toByteArray = bnToByteArray BigInteger.prototype.equals = bnEquals BigInteger.prototype.min = bnMin BigInteger.prototype.max = bnMax BigInteger.prototype.and = bnAnd BigInteger.prototype.or = bnOr BigInteger.prototype.xor = bnXor BigInteger.prototype.andNot = bnAndNot BigInteger.prototype.not = bnNot BigInteger.prototype.shiftLeft = bnShiftLeft BigInteger.prototype.shiftRight = bnShiftRight BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit BigInteger.prototype.bitCount = bnBitCount BigInteger.prototype.testBit = bnTestBit BigInteger.prototype.setBit = bnSetBit BigInteger.prototype.clearBit = bnClearBit BigInteger.prototype.flipBit = bnFlipBit BigInteger.prototype.add = bnAdd BigInteger.prototype.subtract = bnSubtract BigInteger.prototype.multiply = bnMultiply BigInteger.prototype.divide = bnDivide BigInteger.prototype.remainder = bnRemainder BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder BigInteger.prototype.modPow = bnModPow BigInteger.prototype.modInverse = bnModInverse BigInteger.prototype.pow = bnPow BigInteger.prototype.gcd = bnGCD BigInteger.prototype.isProbablePrime = bnIsProbablePrime // JSBN-specific extension BigInteger.prototype.square = bnSquare // BigInteger interfaces not implemented in jsbn: // BigInteger(int signum, byte[] magnitude) // double doubleValue() // float floatValue() // int hashCode() // long longValue() // static BigInteger valueOf(long val) // prng4.js - uses Arcfour as a PRNG function Arcfour() { this.i = 0 this.j = 0 this.S = new Array() } // Initialize arcfour context from key, an array of ints, each from [0..255] function ARC4init(key) { var i, j, t for (i = 0; i < 256; ++i) { this.S[i] = i } j = 0 for (i = 0; i < 256; ++i) { j = (j + this.S[i] + key[i % key.length]) & 255 t = this.S[i] this.S[i] = this.S[j] this.S[j] = t } this.i = 0 this.j = 0 } function ARC4next() { var t this.i = (this.i + 1) & 255 this.j = (this.j + this.S[this.i]) & 255 t = this.S[this.i] this.S[this.i] = this.S[this.j] this.S[this.j] = t return this.S[(t + this.S[this.i]) & 255] } Arcfour.prototype.init = ARC4init Arcfour.prototype.next = ARC4next // Plug in your RNG constructor here function prng_newstate() { return new Arcfour() } // Pool size must be a multiple of 4 and greater than 32. // An array of bytes the size of the pool will be passed to init() var rng_psize = 256 // Random number generator - requires a PRNG backend, e.g. prng4.js var rng_state var rng_pool var rng_pptr // Initialize the pool with junk if needed. if (rng_pool == null) { rng_pool = new Array() rng_pptr = 0 var t if (window.crypto && window.crypto.getRandomValues) { // Extract entropy (2048 bits) from RNG if available var z = new Uint32Array(256) window.crypto.getRandomValues(z) for (t = 0; t < z.length; ++t) { rng_pool[rng_pptr++] = z[t] & 255 } } // Use mouse events for entropy, if we do not have enough entropy by the time // we need it, entropy will be generated by Math.random. var onMouseMoveListener = function(ev) { this.count = this.count || 0 if (this.count >= 256 || rng_pptr >= rng_psize) { if (window.removeEventListener) { window.removeEventListener('mousemove', onMouseMoveListener) } else if (window.detachEvent) { window.detachEvent('onmousemove', onMouseMoveListener) } return } this.count += 1 var mouseCoordinates = ev.x + ev.y rng_pool[rng_pptr++] = mouseCoordinates & 255 } if (window.addEventListener) { window.addEventListener('mousemove', onMouseMoveListener) } else if (window.attachEvent) { window.attachEvent('onmousemove', onMouseMoveListener) } } function rng_get_byte() { if (rng_state == null) { rng_state = prng_newstate() // At this point, we may not have collected enough entropy. If not, fall back to Math.random while (rng_pptr < rng_psize) { var random = Math.floor(65536 * Math.random()) rng_pool[rng_pptr++] = random & 255 } rng_state.init(rng_pool) for (rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) { rng_pool[rng_pptr] = 0 } rng_pptr = 0 } // TODO: allow reseeding after first request return rng_state.next() } function rng_get_bytes(ba) { var i for (i = 0; i < ba.length; ++i) ba[i] = rng_get_byte() } function SecureRandom() {} SecureRandom.prototype.nextBytes = rng_get_bytes // Depends on jsbn.js and rng.js // Version 1.1: support utf-8 encoding in pkcs1pad2 // convert a (hex) string to a bignum object function parseBigInt(str, r) { return new BigInteger(str, r) } function linebrk(s, n) { var ret = '' var i = 0 while (i + n < s.length) { ret += s.substring(i, i + n) + '\n' i += n } return ret + s.substring(i, s.length) } function byte2Hex(b) { if (b < 0x10) { return '0' + b.toString(16) } else { return b.toString(16) } } // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint function pkcs1pad2(s, n) { if (n < s.length + 11) { // TODO: fix for utf-8 console.error('Message too long for RSA') return null } var ba = new Array() var i = s.length - 1 while (i >= 0 && n > 0) { var c = s.charCodeAt(i--) if (c < 128) { // encode using utf-8 ba[--n] = c } else if ((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128 ba[--n] = (c >> 6) | 192 } else { ba[--n] = (c & 63) | 128 ba[--n] = ((c >> 6) & 63) | 128 ba[--n] = (c >> 12) | 224 } } ba[--n] = 0 var rng = new SecureRandom() var x = new Array() while (n > 2) { // random non-zero pad x[0] = 0 while (x[0] == 0) rng.nextBytes(x) ba[--n] = x[0] } ba[--n] = 2 ba[--n] = 0 return new BigInteger(ba) } // "empty" RSA key constructor function RSAKey() { this.n = null this.e = 0 this.d = null this.p = null this.q = null this.dmp1 = null this.dmq1 = null this.coeff = null } // Set the public key fields N and e from hex strings function RSASetPublic(N, E) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16) this.e = parseInt(E, 16) } else { console.error('Invalid RSA public key') } } // Perform raw public operation on "x": return x^e (mod n) function RSADoPublic(x) { return x.modPowInt(this.e, this.n) } // Return the PKCS#1 RSA encryption of "text" as an even-length hex string function RSAEncrypt(text) { var m = pkcs1pad2(text, (this.n.bitLength() + 7) >> 3) if (m == null) return null var c = this.doPublic(m) if (c == null) return null var h = c.toString(16) if ((h.length & 1) == 0) return h; else return '0' + h } // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string // function RSAEncryptB64(text) { // var h = this.encrypt(text); // if(h) return hex2b64(h); else return null; // } // protected RSAKey.prototype.doPublic = RSADoPublic // public RSAKey.prototype.setPublic = RSASetPublic RSAKey.prototype.encrypt = RSAEncrypt // RSAKey.prototype.encrypt_b64 = RSAEncryptB64; // Depends on rsa.js and jsbn2.js // Version 1.1: support utf-8 decoding in pkcs1unpad2 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext function pkcs1unpad2(d, n) { var b = d.toByteArray() var i = 0 while (i < b.length && b[i] == 0) ++i if (b.length - i != n - 1 || b[i] != 2) { return null } ++i while (b[i] != 0) { if (++i >= b.length) return null } var ret = '' while (++i < b.length) { var c = b[i] & 255 if (c < 128) { // utf-8 decode ret += String.fromCharCode(c) } else if ((c > 191) && (c < 224)) { ret += String.fromCharCode(((c & 31) << 6) | (b[i + 1] & 63)) ++i } else { ret += String.fromCharCode(((c & 15) << 12) | ((b[i + 1] & 63) << 6) | (b[i + 2] & 63)) i += 2 } } return ret } // Set the private key fields N, e, and d from hex strings function RSASetPrivate(N, E, D) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16) this.e = parseInt(E, 16) this.d = parseBigInt(D, 16) } else { console.error('Invalid RSA private key') } } // Set the private key fields N, e, d and CRT params from hex strings function RSASetPrivateEx(N, E, D, P, Q, DP, DQ, C) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16) this.e = parseInt(E, 16) this.d = parseBigInt(D, 16) this.p = parseBigInt(P, 16) this.q = parseBigInt(Q, 16) this.dmp1 = parseBigInt(DP, 16) this.dmq1 = parseBigInt(DQ, 16) this.coeff = parseBigInt(C, 16) } else { console.error('Invalid RSA private key') } } // Generate a new random private key B bits long, using public expt E function RSAGenerate(B, E) { var rng = new SecureRandom() var qs = B >> 1 this.e = parseInt(E, 16) var ee = new BigInteger(E, 16) for (;;) { for (;;) { this.p = new BigInteger(B - qs, 1, rng) if (this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break } for (;;) { this.q = new BigInteger(qs, 1, rng) if (this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break } if (this.p.compareTo(this.q) <= 0) { var t = this.p this.p = this.q this.q = t } var p1 = this.p.subtract(BigInteger.ONE) var q1 = this.q.subtract(BigInteger.ONE) var phi = p1.multiply(q1) if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { this.n = this.p.multiply(this.q) this.d = ee.modInverse(phi) this.dmp1 = this.d.mod(p1) this.dmq1 = this.d.mod(q1) this.coeff = this.q.modInverse(this.p) break } } } // Perform raw private operation on "x": return x^d (mod n) function RSADoPrivate(x) { if (this.p == null || this.q == null) { return x.modPow(this.d, this.n) } // TODO: re-calculate any missing CRT params var xp = x.mod(this.p).modPow(this.dmp1, this.p) var xq = x.mod(this.q).modPow(this.dmq1, this.q) while (xp.compareTo(xq) < 0) { xp = xp.add(this.p) } return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq) } // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is an even-length hex string and the output is a plain string. function RSADecrypt(ctext) { var c = parseBigInt(ctext, 16) var m = this.doPrivate(c) if (m == null) return null return pkcs1unpad2(m, (this.n.bitLength() + 7) >> 3) } // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is a Base64-encoded string and the output is a plain string. // function RSAB64Decrypt(ctext) { // var h = b64tohex(ctext); // if(h) return this.decrypt(h); else return null; // } // protected RSAKey.prototype.doPrivate = RSADoPrivate // public RSAKey.prototype.setPrivate = RSASetPrivate RSAKey.prototype.setPrivateEx = RSASetPrivateEx RSAKey.prototype.generate = RSAGenerate RSAKey.prototype.decrypt = RSADecrypt; // RSAKey.prototype.b64_decrypt = RSAB64Decrypt; // Copyright (c) 2011 Kevin M Burns Jr. // All Rights Reserved. // See "LICENSE" for details. // // Extension to jsbn which adds facilities for asynchronous RSA key generation // Primarily created to avoid execution timeout on mobile devices // // http://www-cs-students.stanford.edu/~tjw/jsbn/ // // --- (function() { // Generate a new random private key B bits long, using public expt E var RSAGenerateAsync = function(B, E, callback) { // var rng = new SeededRandom(); var rng = new SecureRandom() var qs = B >> 1 this.e = parseInt(E, 16) var ee = new BigInteger(E, 16) var rsa = this // These functions have non-descript names because they were originally for(;;) loops. // I don't know about cryptography to give them better names than loop1-4. var loop1 = function() { var loop4 = function() { if (rsa.p.compareTo(rsa.q) <= 0) { var t = rsa.p rsa.p = rsa.q rsa.q = t } var p1 = rsa.p.subtract(BigInteger.ONE) var q1 = rsa.q.subtract(BigInteger.ONE) var phi = p1.multiply(q1) if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { rsa.n = rsa.p.multiply(rsa.q) rsa.d = ee.modInverse(phi) rsa.dmp1 = rsa.d.mod(p1) rsa.dmq1 = rsa.d.mod(q1) rsa.coeff = rsa.q.modInverse(rsa.p) setTimeout(function() { callback() }, 0) // escape } else { setTimeout(loop1, 0) } } var loop3 = function() { rsa.q = nbi() rsa.q.fromNumberAsync(qs, 1, rng, function() { rsa.q.subtract(BigInteger.ONE).gcda(ee, function(r) { if (r.compareTo(BigInteger.ONE) == 0 && rsa.q.isProbablePrime(10)) { setTimeout(loop4, 0) } else { setTimeout(loop3, 0) } }) }) } var loop2 = function() { rsa.p = nbi() rsa.p.fromNumberAsync(B - qs, 1, rng, function() { rsa.p.subtract(BigInteger.ONE).gcda(ee, function(r) { if (r.compareTo(BigInteger.ONE) == 0 && rsa.p.isProbablePrime(10)) { setTimeout(loop3, 0) } else { setTimeout(loop2, 0) } }) }) } setTimeout(loop2, 0) } setTimeout(loop1, 0) } RSAKey.prototype.generateAsync = RSAGenerateAsync // Public API method var bnGCDAsync = function(a, callback) { var x = (this.s < 0) ? this.negate() : this.clone() var y = (a.s < 0) ? a.negate() : a.clone() if (x.compareTo(y) < 0) { var t = x x = y y = t } var i = x.getLowestSetBit() var g = y.getLowestSetBit() if (g < 0) { callback(x) return } if (i < g) g = i if (g > 0) { x.rShiftTo(g, x) y.rShiftTo(g, y) } // Workhorse of the algorithm, gets called 200 - 800 times per 512 bit keygen. var gcda1 = function() { if ((i = x.getLowestSetBit()) > 0) { x.rShiftTo(i, x) } if ((i = y.getLowestSetBit()) > 0) { y.rShiftTo(i, y) } if (x.compareTo(y) >= 0) { x.subTo(y, x) x.rShiftTo(1, x) } else { y.subTo(x, y) y.rShiftTo(1, y) } if (!(x.signum() > 0)) { if (g > 0) y.lShiftTo(g, y) setTimeout(function() { callback(y) }, 0) // escape } else { setTimeout(gcda1, 0) } } setTimeout(gcda1, 10) } BigInteger.prototype.gcda = bnGCDAsync // (protected) alternate constructor var bnpFromNumberAsync = function(a, b, c, callback) { if (typeof b === 'number') { if (a < 2) { this.fromInt(1) } else { this.fromNumber(a, c) if (!this.testBit(a - 1)) { this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this) } if (this.isEven()) { this.dAddOffset(1, 0) } var bnp = this var bnpfn1 = function() { bnp.dAddOffset(2, 0) if (bnp.bitLength() > a) bnp.subTo(BigInteger.ONE.shiftLeft(a - 1), bnp) if (bnp.isProbablePrime(b)) { setTimeout(function() { callback() }, 0) // escape } else { setTimeout(bnpfn1, 0) } } setTimeout(bnpfn1, 0) } } else { var x = new Array(); var t = a & 7 x.length = (a >> 3) + 1 b.nextBytes(x) if (t > 0) x[0] &= ((1 << t) - 1); else x[0] = 0 this.fromString(x, 256) } } BigInteger.prototype.fromNumberAsync = bnpFromNumberAsync })(); var b64map = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' var b64pad = '=' function hex2b64(h) { var i var c var ret = '' for (i = 0; i + 3 <= h.length; i += 3) { c = parseInt(h.substring(i, i + 3), 16) ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63) } if (i + 1 == h.length) { c = parseInt(h.substring(i, i + 1), 16) ret += b64map.charAt(c << 2) } else if (i + 2 == h.length) { c = parseInt(h.substring(i, i + 2), 16) ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4) } while ((ret.length & 3) > 0) ret += b64pad return ret } // convert a base64 string to hex function b64tohex(s) { var ret = '' var i var k = 0 // b64 state, 0-3 var slop for (i = 0; i < s.length; ++i) { if (s.charAt(i) == b64pad) break v = b64map.indexOf(s.charAt(i)) if (v < 0) continue if (k == 0) { ret += int2char(v >> 2) slop = v & 3 k = 1 } else if (k == 1) { ret += int2char((slop << 2) | (v >> 4)) slop = v & 0xf k = 2 } else if (k == 2) { ret += int2char(slop) ret += int2char(v >> 2) slop = v & 3 k = 3 } else { ret += int2char((slop << 2) | (v >> 4)) ret += int2char(v & 0xf) k = 0 } } if (k == 1) { ret += int2char(slop << 2) } return ret } // convert a base64 string to a byte/number array function b64toBA(s) { // piggyback on b64tohex for now, optimize later var h = b64tohex(s) var i var a = new Array() for (i = 0; 2 * i < h.length; ++i) { a[i] = parseInt(h.substring(2 * i, 2 * i + 2), 16) } return a } /*! asn1-1.0.2.js (c) 2013 Kenji Urushima | kjur.github.com/jsrsasign/license */ var JSX = JSX || {} JSX.env = JSX.env || {} var L = JSX; var OP = Object.prototype; var FUNCTION_TOSTRING = '[object Function]'; var ADD = ['toString', 'valueOf'] JSX.env.parseUA = function(agent) { var numberify = function(s) { var c = 0 return parseFloat(s.replace(/\./g, function() { return (c++ == 1) ? '' : '.' })) } var nav = navigator var o = { ie: 0, opera: 0, gecko: 0, webkit: 0, chrome: 0, mobile: null, air: 0, ipad: 0, iphone: 0, ipod: 0, ios: null, android: 0, webos: 0, caja: nav && nav.cajaVersion, secure: false, os: null } var ua = agent || (navigator && navigator.userAgent) var loc = window && window.location var href = loc && loc.href var m o.secure = href && (href.toLowerCase().indexOf('https') === 0) if (ua) { if ((/windows|win32/i).test(ua)) { o.os = 'windows' } else if ((/macintosh/i).test(ua)) { o.os = 'macintosh' } else if ((/rhino/i).test(ua)) { o.os = 'rhino' } if ((/KHTML/).test(ua)) { o.webkit = 1 } m = ua.match(/AppleWebKit\/([^\s]*)/) if (m && m[1]) { o.webkit = numberify(m[1]) if (/ Mobile\//.test(ua)) { o.mobile = 'Apple' // iPhone or iPod Touch m = ua.match(/OS ([^\s]*)/) if (m && m[1]) { m = numberify(m[1].replace('_', '.')) } o.ios = m o.ipad = o.ipod = o.iphone = 0 m = ua.match(/iPad|iPod|iPhone/) if (m && m[0]) { o[m[0].toLowerCase()] = o.ios } } else { m = ua.match(/NokiaN[^\/]*|Android \d\.\d|webOS\/\d\.\d/) if (m) { o.mobile = m[0] } if (/webOS/.test(ua)) { o.mobile = 'WebOS' m = ua.match(/webOS\/([^\s]*);/) if (m && m[1]) { o.webos = numberify(m[1]) } } if (/ Android/.test(ua)) { o.mobile = 'Android' m = ua.match(/Android ([^\s]*);/) if (m && m[1]) { o.android = numberify(m[1]) } } } m = ua.match(/Chrome\/([^\s]*)/) if (m && m[1]) { o.chrome = numberify(m[1]) // Chrome } else { m = ua.match(/AdobeAIR\/([^\s]*)/) if (m) { o.air = m[0] // Adobe AIR 1.0 or better } } } if (!o.webkit) { m = ua.match(/Opera[\s\/]([^\s]*)/) if (m && m[1]) { o.opera = numberify(m[1]) m = ua.match(/Version\/([^\s]*)/) if (m && m[1]) { o.opera = numberify(m[1]) // opera 10+ } m = ua.match(/Opera Mini[^;]*/) if (m) { o.mobile = m[0] // ex: Opera Mini/2.0.4509/1316 } } else { // not opera or webkit m = ua.match(/MSIE\s([^;]*)/) if (m && m[1]) { o.ie = numberify(m[1]) } else { // not opera, webkit, or ie m = ua.match(/Gecko\/([^\s]*)/) if (m) { o.gecko = 1 // Gecko detected, look for revision m = ua.match(/rv:([^\s\)]*)/) if (m && m[1]) { o.gecko = numberify(m[1]) } } } } } } return o } JSX.env.ua = JSX.env.parseUA() JSX.isFunction = function(o) { return (typeof o === 'function') || OP.toString.apply(o) === FUNCTION_TOSTRING } JSX._IEEnumFix = (JSX.env.ua.ie) ? function(r, s) { var i, fname, f for (i = 0; i < ADD.length; i = i + 1) { fname = ADD[i] f = s[fname] if (L.isFunction(f) && f != OP[fname]) { r[fname] = f } } } : function() {} JSX.extend = function(subc, superc, overrides) { if (!superc || !subc) { throw new Error('extend failed, please check that ' + 'all dependencies are included.') } var F = function() {}; var i F.prototype = superc.prototype subc.prototype = new F() subc.prototype.constructor = subc subc.superclass = superc.prototype if (superc.prototype.constructor == OP.constructor) { superc.prototype.constructor = superc } if (overrides) { for (i in overrides) { if (L.hasOwnProperty(overrides, i)) { subc.prototype[i] = overrides[i] } } L._IEEnumFix(subc.prototype, overrides) } } /* * asn1.js - ASN.1 DER encoder classes * * Copyright (c) 2013 Kenji Urushima (kenji.urushima@gmail.com) * * This software is licensed under the terms of the MIT License. * http://kjur.github.com/jsrsasign/license * * The above copyright and license notice shall be * included in all copies or substantial portions of the Software. */ /** * @fileOverview * @name asn1-1.0.js * @author Kenji Urushima kenji.urushima@gmail.com * @version 1.0.2 (2013-May-30) * @since 2.1 * @license MIT License */ /** * kjur's class library name space *

* This name space provides following name spaces: *

*

* NOTE: Please ignore method summary and document of this namespace. This caused by a bug of jsdoc2. * @name KJUR * @namespace kjur's class library name space */ var KJUR if (typeof KJUR === 'undefined' || !KJUR) KJUR = {} /** * kjur's ASN.1 class library name space *

* This is ITU-T X.690 ASN.1 DER encoder class library and * class structure and methods is very similar to * org.bouncycastle.asn1 package of * well known BouncyCaslte Cryptography Library. * *

PROVIDING ASN.1 PRIMITIVES

* Here are ASN.1 DER primitive classes. * * *

OTHER ASN.1 CLASSES

* *

* NOTE: Please ignore method summary and document of this namespace. This caused by a bug of jsdoc2. * @name KJUR.asn1 * @namespace */ if (typeof KJUR.asn1 === 'undefined' || !KJUR.asn1) KJUR.asn1 = {} /** * ASN1 utilities class * @name KJUR.asn1.ASN1Util * @classs ASN1 utilities class * @since asn1 1.0.2 */ KJUR.asn1.ASN1Util = new function() { this.integerToByteHex = function(i) { var h = i.toString(16) if ((h.length % 2) == 1) h = '0' + h return h } this.bigIntToMinTwosComplementsHex = function(bigIntegerValue) { var h = bigIntegerValue.toString(16) if (h.substr(0, 1) != '-') { if (h.length % 2 == 1) { h = '0' + h } else { if (!h.match(/^[0-7]/)) { h = '00' + h } } } else { var hPos = h.substr(1) var xorLen = hPos.length if (xorLen % 2 == 1) { xorLen += 1 } else { if (!h.match(/^[0-7]/)) { xorLen += 2 } } var hMask = '' for (var i = 0; i < xorLen; i++) { hMask += 'f' } var biMask = new BigInteger(hMask, 16) var biNeg = biMask.xor(bigIntegerValue).add(BigInteger.ONE) h = biNeg.toString(16).replace(/^-/, '') } return h } /** * get PEM string from hexadecimal data and header string * @name getPEMStringFromHex * @memberOf KJUR.asn1.ASN1Util * @function * @param {String} dataHex hexadecimal string of PEM body * @param {String} pemHeader PEM header string (ex. 'RSA PRIVATE KEY') * @return {String} PEM formatted string of input data * @description * @example * var pem = KJUR.asn1.ASN1Util.getPEMStringFromHex('616161', 'RSA PRIVATE KEY'); * // value of pem will be: * -----BEGIN PRIVATE KEY----- * YWFh * -----END PRIVATE KEY----- */ this.getPEMStringFromHex = function(dataHex, pemHeader) { var dataWA = CryptoJS.enc.Hex.parse(dataHex) var dataB64 = CryptoJS.enc.Base64.stringify(dataWA) var pemBody = dataB64.replace(/(.{64})/g, '$1\r\n') pemBody = pemBody.replace(/\r\n$/, '') return '-----BEGIN ' + pemHeader + '-----\r\n' + pemBody + '\r\n-----END ' + pemHeader + '-----\r\n' } }() // ******************************************************************** // Abstract ASN.1 Classes // ******************************************************************** // ******************************************************************** /** * base class for ASN.1 DER encoder object * @name KJUR.asn1.ASN1Object * @class base class for ASN.1 DER encoder object * @property {Boolean} isModified flag whether internal data was changed * @property {String} hTLV hexadecimal string of ASN.1 TLV * @property {String} hT hexadecimal string of ASN.1 TLV tag(T) * @property {String} hL hexadecimal string of ASN.1 TLV length(L) * @property {String} hV hexadecimal string of ASN.1 TLV value(V) * @description */ KJUR.asn1.ASN1Object = function() { var isModified = true var hTLV = null var hT = '00' var hL = '00' var hV = '' /** * get hexadecimal ASN.1 TLV length(L) bytes from TLV value(V) * @name getLengthHexFromValue * @memberOf KJUR.asn1.ASN1Object * @function * @return {String} hexadecimal string of ASN.1 TLV length(L) */ this.getLengthHexFromValue = function() { if (typeof this.hV === 'undefined' || this.hV == null) { throw 'this.hV is null or undefined.' } if (this.hV.length % 2 == 1) { throw 'value hex must be even length: n=' + hV.length + ',v=' + this.hV } var n = this.hV.length / 2 var hN = n.toString(16) if (hN.length % 2 == 1) { hN = '0' + hN } if (n < 128) { return hN } else { var hNlen = hN.length / 2 if (hNlen > 15) { throw 'ASN.1 length too long to represent by 8x: n = ' + n.toString(16) } var head = 128 + hNlen return head.toString(16) + hN } } /** * get hexadecimal string of ASN.1 TLV bytes * @name getEncodedHex * @memberOf KJUR.asn1.ASN1Object * @function * @return {String} hexadecimal string of ASN.1 TLV */ this.getEncodedHex = function() { if (this.hTLV == null || this.isModified) { this.hV = this.getFreshValueHex() this.hL = this.getLengthHexFromValue() this.hTLV = this.hT + this.hL + this.hV this.isModified = false // console.error("first time: " + this.hTLV); } return this.hTLV } /** * get hexadecimal string of ASN.1 TLV value(V) bytes * @name getValueHex * @memberOf KJUR.asn1.ASN1Object * @function * @return {String} hexadecimal string of ASN.1 TLV value(V) bytes */ this.getValueHex = function() { this.getEncodedHex() return this.hV } this.getFreshValueHex = function() { return '' } } // == BEGIN DERAbstractString ================================================ /** * base class for ASN.1 DER string classes * @name KJUR.asn1.DERAbstractString * @class base class for ASN.1 DER string classes * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @property {String} s internal string of value * @extends KJUR.asn1.ASN1Object * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERAbstractString = function(params) { KJUR.asn1.DERAbstractString.superclass.constructor.call(this) var s = null var hV = null /** * get string value of this string object * @name getString * @memberOf KJUR.asn1.DERAbstractString * @function * @return {String} string value of this string object */ this.getString = function() { return this.s } /** * set value by a string * @name setString * @memberOf KJUR.asn1.DERAbstractString * @function * @param {String} newS value by a string to set */ this.setString = function(newS) { this.hTLV = null this.isModified = true this.s = newS this.hV = stohex(this.s) } /** * set value by a hexadecimal string * @name setStringHex * @memberOf KJUR.asn1.DERAbstractString * @function * @param {String} newHexString value by a hexadecimal string to set */ this.setStringHex = function(newHexString) { this.hTLV = null this.isModified = true this.s = null this.hV = newHexString } this.getFreshValueHex = function() { return this.hV } if (typeof params !== 'undefined') { if (typeof params['str'] !== 'undefined') { this.setString(params['str']) } else if (typeof params['hex'] !== 'undefined') { this.setStringHex(params['hex']) } } } JSX.extend(KJUR.asn1.DERAbstractString, KJUR.asn1.ASN1Object) // == END DERAbstractString ================================================ // == BEGIN DERAbstractTime ================================================== /** * base class for ASN.1 DER Generalized/UTCTime class * @name KJUR.asn1.DERAbstractTime * @class base class for ASN.1 DER Generalized/UTCTime class * @param {Array} params associative array of parameters (ex. {'str': '130430235959Z'}) * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERAbstractTime = function(params) { KJUR.asn1.DERAbstractTime.superclass.constructor.call(this) var s = null var date = null // --- PRIVATE METHODS -------------------- this.localDateToUTC = function(d) { utc = d.getTime() + (d.getTimezoneOffset() * 60000) var utcDate = new Date(utc) return utcDate } this.formatDate = function(dateObject, type) { var pad = this.zeroPadding var d = this.localDateToUTC(dateObject) var year = String(d.getFullYear()) if (type == 'utc') year = year.substr(2, 2) var month = pad(String(d.getMonth() + 1), 2) var day = pad(String(d.getDate()), 2) var hour = pad(String(d.getHours()), 2) var min = pad(String(d.getMinutes()), 2) var sec = pad(String(d.getSeconds()), 2) return year + month + day + hour + min + sec + 'Z' } this.zeroPadding = function(s, len) { if (s.length >= len) return s return new Array(len - s.length + 1).join('0') + s } // --- PUBLIC METHODS -------------------- /** * get string value of this string object * @name getString * @memberOf KJUR.asn1.DERAbstractTime * @function * @return {String} string value of this time object */ this.getString = function() { return this.s } /** * set value by a string * @name setString * @memberOf KJUR.asn1.DERAbstractTime * @function * @param {String} newS value by a string to set such like "130430235959Z" */ this.setString = function(newS) { this.hTLV = null this.isModified = true this.s = newS this.hV = stohex(this.s) } /** * set value by a Date object * @name setByDateValue * @memberOf KJUR.asn1.DERAbstractTime * @function * @param {Integer} year year of date (ex. 2013) * @param {Integer} month month of date between 1 and 12 (ex. 12) * @param {Integer} day day of month * @param {Integer} hour hours of date * @param {Integer} min minutes of date * @param {Integer} sec seconds of date */ this.setByDateValue = function(year, month, day, hour, min, sec) { var dateObject = new Date(Date.UTC(year, month - 1, day, hour, min, sec, 0)) this.setByDate(dateObject) } this.getFreshValueHex = function() { return this.hV } } JSX.extend(KJUR.asn1.DERAbstractTime, KJUR.asn1.ASN1Object) // == END DERAbstractTime ================================================== // == BEGIN DERAbstractStructured ============================================ /** * base class for ASN.1 DER structured class * @name KJUR.asn1.DERAbstractStructured * @class base class for ASN.1 DER structured class * @property {Array} asn1Array internal array of ASN1Object * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERAbstractStructured = function(params) { KJUR.asn1.DERAbstractString.superclass.constructor.call(this) var asn1Array = null /** * set value by array of ASN1Object * @name setByASN1ObjectArray * @memberOf KJUR.asn1.DERAbstractStructured * @function * @param {array} asn1ObjectArray array of ASN1Object to set */ this.setByASN1ObjectArray = function(asn1ObjectArray) { this.hTLV = null this.isModified = true this.asn1Array = asn1ObjectArray } /** * append an ASN1Object to internal array * @name appendASN1Object * @memberOf KJUR.asn1.DERAbstractStructured * @function * @param {ASN1Object} asn1Object to add */ this.appendASN1Object = function(asn1Object) { this.hTLV = null this.isModified = true this.asn1Array.push(asn1Object) } this.asn1Array = new Array() if (typeof params !== 'undefined') { if (typeof params['array'] !== 'undefined') { this.asn1Array = params['array'] } } } JSX.extend(KJUR.asn1.DERAbstractStructured, KJUR.asn1.ASN1Object) // ******************************************************************** // ASN.1 Object Classes // ******************************************************************** // ******************************************************************** /** * class for ASN.1 DER Boolean * @name KJUR.asn1.DERBoolean * @class class for ASN.1 DER Boolean * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERBoolean = function() { KJUR.asn1.DERBoolean.superclass.constructor.call(this) this.hT = '01' this.hTLV = '0101ff' } JSX.extend(KJUR.asn1.DERBoolean, KJUR.asn1.ASN1Object) // ******************************************************************** /** * class for ASN.1 DER Integer * @name KJUR.asn1.DERInteger * @class class for ASN.1 DER Integer * @extends KJUR.asn1.ASN1Object * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERInteger = function(params) { KJUR.asn1.DERInteger.superclass.constructor.call(this) this.hT = '02' /** * set value by Tom Wu's BigInteger object * @name setByBigInteger * @memberOf KJUR.asn1.DERInteger * @function * @param {BigInteger} bigIntegerValue to set */ this.setByBigInteger = function(bigIntegerValue) { this.hTLV = null this.isModified = true this.hV = KJUR.asn1.ASN1Util.bigIntToMinTwosComplementsHex(bigIntegerValue) } /** * set value by integer value * @name setByInteger * @memberOf KJUR.asn1.DERInteger * @function * @param {Integer} integer value to set */ this.setByInteger = function(intValue) { var bi = new BigInteger(String(intValue), 10) this.setByBigInteger(bi) } /** * set value by integer value * @name setValueHex * @memberOf KJUR.asn1.DERInteger * @function * @param {String} hexadecimal string of integer value * @description *
* NOTE: Value shall be represented by minimum octet length of * two's complement representation. */ this.setValueHex = function(newHexString) { this.hV = newHexString } this.getFreshValueHex = function() { return this.hV } if (typeof params !== 'undefined') { if (typeof params['bigint'] !== 'undefined') { this.setByBigInteger(params['bigint']) } else if (typeof params['int'] !== 'undefined') { this.setByInteger(params['int']) } else if (typeof params['hex'] !== 'undefined') { this.setValueHex(params['hex']) } } } JSX.extend(KJUR.asn1.DERInteger, KJUR.asn1.ASN1Object) // ******************************************************************** /** * class for ASN.1 DER encoded BitString primitive * @name KJUR.asn1.DERBitString * @class class for ASN.1 DER encoded BitString primitive * @extends KJUR.asn1.ASN1Object * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERBitString = function(params) { KJUR.asn1.DERBitString.superclass.constructor.call(this) this.hT = '03' /** * set ASN.1 value(V) by a hexadecimal string including unused bits * @name setHexValueIncludingUnusedBits * @memberOf KJUR.asn1.DERBitString * @function * @param {String} newHexStringIncludingUnusedBits */ this.setHexValueIncludingUnusedBits = function(newHexStringIncludingUnusedBits) { this.hTLV = null this.isModified = true this.hV = newHexStringIncludingUnusedBits } /** * set ASN.1 value(V) by unused bit and hexadecimal string of value * @name setUnusedBitsAndHexValue * @memberOf KJUR.asn1.DERBitString * @function * @param {Integer} unusedBits * @param {String} hValue */ this.setUnusedBitsAndHexValue = function(unusedBits, hValue) { if (unusedBits < 0 || unusedBits > 7) { throw 'unused bits shall be from 0 to 7: u = ' + unusedBits } var hUnusedBits = '0' + unusedBits this.hTLV = null this.isModified = true this.hV = hUnusedBits + hValue } /** * set ASN.1 DER BitString by binary string * @name setByBinaryString * @memberOf KJUR.asn1.DERBitString * @function * @param {String} binaryString binary value string (i.e. '10111') * @description * Its unused bits will be calculated automatically by length of * 'binaryValue'.
* NOTE: Trailing zeros '0' will be ignored. */ this.setByBinaryString = function(binaryString) { binaryString = binaryString.replace(/0+$/, '') var unusedBits = 8 - binaryString.length % 8 if (unusedBits == 8) unusedBits = 0 for (var i = 0; i <= unusedBits; i++) { binaryString += '0' } var h = '' for (var i = 0; i < binaryString.length - 1; i += 8) { var b = binaryString.substr(i, 8) var x = parseInt(b, 2).toString(16) if (x.length == 1) x = '0' + x h += x } this.hTLV = null this.isModified = true this.hV = '0' + unusedBits + h } /** * set ASN.1 TLV value(V) by an array of boolean * @name setByBooleanArray * @memberOf KJUR.asn1.DERBitString * @function * @param {array} booleanArray array of boolean (ex. [true, false, true]) * @description * NOTE: Trailing falses will be ignored. */ this.setByBooleanArray = function(booleanArray) { var s = '' for (var i = 0; i < booleanArray.length; i++) { if (booleanArray[i] == true) { s += '1' } else { s += '0' } } this.setByBinaryString(s) } /** * generate an array of false with specified length * @name newFalseArray * @memberOf KJUR.asn1.DERBitString * @function * @param {Integer} nLength length of array to generate * @return {array} array of boolean faluse * @description * This static method may be useful to initialize boolean array. */ this.newFalseArray = function(nLength) { var a = new Array(nLength) for (var i = 0; i < nLength; i++) { a[i] = false } return a } this.getFreshValueHex = function() { return this.hV } if (typeof params !== 'undefined') { if (typeof params['hex'] !== 'undefined') { this.setHexValueIncludingUnusedBits(params['hex']) } else if (typeof params['bin'] !== 'undefined') { this.setByBinaryString(params['bin']) } else if (typeof params['array'] !== 'undefined') { this.setByBooleanArray(params['array']) } } } JSX.extend(KJUR.asn1.DERBitString, KJUR.asn1.ASN1Object) // ******************************************************************** /** * class for ASN.1 DER OctetString * @name KJUR.asn1.DEROctetString * @class class for ASN.1 DER OctetString * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DEROctetString = function(params) { KJUR.asn1.DEROctetString.superclass.constructor.call(this, params) this.hT = '04' } JSX.extend(KJUR.asn1.DEROctetString, KJUR.asn1.DERAbstractString) // ******************************************************************** /** * class for ASN.1 DER Null * @name KJUR.asn1.DERNull * @class class for ASN.1 DER Null * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERNull = function() { KJUR.asn1.DERNull.superclass.constructor.call(this) this.hT = '05' this.hTLV = '0500' } JSX.extend(KJUR.asn1.DERNull, KJUR.asn1.ASN1Object) // ******************************************************************** /** * class for ASN.1 DER ObjectIdentifier * @name KJUR.asn1.DERObjectIdentifier * @class class for ASN.1 DER ObjectIdentifier * @param {Array} params associative array of parameters (ex. {'oid': '2.5.4.5'}) * @extends KJUR.asn1.ASN1Object * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERObjectIdentifier = function(params) { var itox = function(i) { var h = i.toString(16) if (h.length == 1) h = '0' + h return h } var roidtox = function(roid) { var h = '' var bi = new BigInteger(roid, 10) var b = bi.toString(2) var padLen = 7 - b.length % 7 if (padLen == 7) padLen = 0 var bPad = '' for (var i = 0; i < padLen; i++) bPad += '0' b = bPad + b for (var i = 0; i < b.length - 1; i += 7) { var b8 = b.substr(i, 7) if (i != b.length - 7) b8 = '1' + b8 h += itox(parseInt(b8, 2)) } return h } KJUR.asn1.DERObjectIdentifier.superclass.constructor.call(this) this.hT = '06' /** * set value by a hexadecimal string * @name setValueHex * @memberOf KJUR.asn1.DERObjectIdentifier * @function * @param {String} newHexString hexadecimal value of OID bytes */ this.setValueHex = function(newHexString) { this.hTLV = null this.isModified = true this.s = null this.hV = newHexString } /** * set value by a OID string * @name setValueOidString * @memberOf KJUR.asn1.DERObjectIdentifier * @function * @param {String} oidString OID string (ex. 2.5.4.13) */ this.setValueOidString = function(oidString) { if (!oidString.match(/^[0-9.]+$/)) { throw 'malformed oid string: ' + oidString } var h = '' var a = oidString.split('.') var i0 = parseInt(a[0]) * 40 + parseInt(a[1]) h += itox(i0) a.splice(0, 2) for (var i = 0; i < a.length; i++) { h += roidtox(a[i]) } this.hTLV = null this.isModified = true this.s = null this.hV = h } /** * set value by a OID name * @name setValueName * @memberOf KJUR.asn1.DERObjectIdentifier * @function * @param {String} oidName OID name (ex. 'serverAuth') * @since 1.0.1 * @description * OID name shall be defined in 'KJUR.asn1.x509.OID.name2oidList'. * Otherwise raise error. */ this.setValueName = function(oidName) { if (typeof KJUR.asn1.x509.OID.name2oidList[oidName] !== 'undefined') { var oid = KJUR.asn1.x509.OID.name2oidList[oidName] this.setValueOidString(oid) } else { throw 'DERObjectIdentifier oidName undefined: ' + oidName } } this.getFreshValueHex = function() { return this.hV } if (typeof params !== 'undefined') { if (typeof params['oid'] !== 'undefined') { this.setValueOidString(params['oid']) } else if (typeof params['hex'] !== 'undefined') { this.setValueHex(params['hex']) } else if (typeof params['name'] !== 'undefined') { this.setValueName(params['name']) } } } JSX.extend(KJUR.asn1.DERObjectIdentifier, KJUR.asn1.ASN1Object) // ******************************************************************** /** * class for ASN.1 DER UTF8String * @name KJUR.asn1.DERUTF8String * @class class for ASN.1 DER UTF8String * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERUTF8String = function(params) { KJUR.asn1.DERUTF8String.superclass.constructor.call(this, params) this.hT = '0c' } JSX.extend(KJUR.asn1.DERUTF8String, KJUR.asn1.DERAbstractString) // ******************************************************************** /** * class for ASN.1 DER NumericString * @name KJUR.asn1.DERNumericString * @class class for ASN.1 DER NumericString * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERNumericString = function(params) { KJUR.asn1.DERNumericString.superclass.constructor.call(this, params) this.hT = '12' } JSX.extend(KJUR.asn1.DERNumericString, KJUR.asn1.DERAbstractString) // ******************************************************************** /** * class for ASN.1 DER PrintableString * @name KJUR.asn1.DERPrintableString * @class class for ASN.1 DER PrintableString * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERPrintableString = function(params) { KJUR.asn1.DERPrintableString.superclass.constructor.call(this, params) this.hT = '13' } JSX.extend(KJUR.asn1.DERPrintableString, KJUR.asn1.DERAbstractString) // ******************************************************************** /** * class for ASN.1 DER TeletexString * @name KJUR.asn1.DERTeletexString * @class class for ASN.1 DER TeletexString * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERTeletexString = function(params) { KJUR.asn1.DERTeletexString.superclass.constructor.call(this, params) this.hT = '14' } JSX.extend(KJUR.asn1.DERTeletexString, KJUR.asn1.DERAbstractString) // ******************************************************************** /** * class for ASN.1 DER IA5String * @name KJUR.asn1.DERIA5String * @class class for ASN.1 DER IA5String * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERIA5String = function(params) { KJUR.asn1.DERIA5String.superclass.constructor.call(this, params) this.hT = '16' } JSX.extend(KJUR.asn1.DERIA5String, KJUR.asn1.DERAbstractString) // ******************************************************************** /** * class for ASN.1 DER UTCTime * @name KJUR.asn1.DERUTCTime * @class class for ASN.1 DER UTCTime * @param {Array} params associative array of parameters (ex. {'str': '130430235959Z'}) * @extends KJUR.asn1.DERAbstractTime * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. *

EXAMPLES

* @example * var d1 = new KJUR.asn1.DERUTCTime(); * d1.setString('130430125959Z'); * * var d2 = new KJUR.asn1.DERUTCTime({'str': '130430125959Z'}); * * var d3 = new KJUR.asn1.DERUTCTime({'date': new Date(Date.UTC(2015, 0, 31, 0, 0, 0, 0))}); */ KJUR.asn1.DERUTCTime = function(params) { KJUR.asn1.DERUTCTime.superclass.constructor.call(this, params) this.hT = '17' /** * set value by a Date object * @name setByDate * @memberOf KJUR.asn1.DERUTCTime * @function * @param {Date} dateObject Date object to set ASN.1 value(V) */ this.setByDate = function(dateObject) { this.hTLV = null this.isModified = true this.date = dateObject this.s = this.formatDate(this.date, 'utc') this.hV = stohex(this.s) } if (typeof params !== 'undefined') { if (typeof params['str'] !== 'undefined') { this.setString(params['str']) } else if (typeof params['hex'] !== 'undefined') { this.setStringHex(params['hex']) } else if (typeof params['date'] !== 'undefined') { this.setByDate(params['date']) } } } JSX.extend(KJUR.asn1.DERUTCTime, KJUR.asn1.DERAbstractTime) // ******************************************************************** /** * class for ASN.1 DER GeneralizedTime * @name KJUR.asn1.DERGeneralizedTime * @class class for ASN.1 DER GeneralizedTime * @param {Array} params associative array of parameters (ex. {'str': '20130430235959Z'}) * @extends KJUR.asn1.DERAbstractTime * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERGeneralizedTime = function(params) { KJUR.asn1.DERGeneralizedTime.superclass.constructor.call(this, params) this.hT = '18' /** * set value by a Date object * @name setByDate * @memberOf KJUR.asn1.DERGeneralizedTime * @function * @param {Date} dateObject Date object to set ASN.1 value(V) * @example * When you specify UTC time, use 'Date.UTC' method like this:
* var o = new DERUTCTime(); * var date = new Date(Date.UTC(2015, 0, 31, 23, 59, 59, 0)); #2015JAN31 23:59:59 * o.setByDate(date); */ this.setByDate = function(dateObject) { this.hTLV = null this.isModified = true this.date = dateObject this.s = this.formatDate(this.date, 'gen') this.hV = stohex(this.s) } if (typeof params !== 'undefined') { if (typeof params['str'] !== 'undefined') { this.setString(params['str']) } else if (typeof params['hex'] !== 'undefined') { this.setStringHex(params['hex']) } else if (typeof params['date'] !== 'undefined') { this.setByDate(params['date']) } } } JSX.extend(KJUR.asn1.DERGeneralizedTime, KJUR.asn1.DERAbstractTime) // ******************************************************************** /** * class for ASN.1 DER Sequence * @name KJUR.asn1.DERSequence * @class class for ASN.1 DER Sequence * @extends KJUR.asn1.DERAbstractStructured * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERSequence = function(params) { KJUR.asn1.DERSequence.superclass.constructor.call(this, params) this.hT = '30' this.getFreshValueHex = function() { var h = '' for (var i = 0; i < this.asn1Array.length; i++) { var asn1Obj = this.asn1Array[i] h += asn1Obj.getEncodedHex() } this.hV = h return this.hV } } JSX.extend(KJUR.asn1.DERSequence, KJUR.asn1.DERAbstractStructured) // ******************************************************************** /** * class for ASN.1 DER Set * @name KJUR.asn1.DERSet * @class class for ASN.1 DER Set * @extends KJUR.asn1.DERAbstractStructured * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERSet = function(params) { KJUR.asn1.DERSet.superclass.constructor.call(this, params) this.hT = '31' this.getFreshValueHex = function() { var a = new Array() for (var i = 0; i < this.asn1Array.length; i++) { var asn1Obj = this.asn1Array[i] a.push(asn1Obj.getEncodedHex()) } a.sort() this.hV = a.join('') return this.hV } } JSX.extend(KJUR.asn1.DERSet, KJUR.asn1.DERAbstractStructured) // ******************************************************************** /** * class for ASN.1 DER TaggedObject * @name KJUR.asn1.DERTaggedObject * @class class for ASN.1 DER TaggedObject * @extends KJUR.asn1.ASN1Object * @description *
* Parameter 'tagNoNex' is ASN.1 tag(T) value for this object. * For example, if you find '[1]' tag in a ASN.1 dump, * 'tagNoHex' will be 'a1'. *
* As for optional argument 'params' for constructor, you can specify *ANY* of * following properties: * * @example * d1 = new KJUR.asn1.DERUTF8String({'str':'a'}); * d2 = new KJUR.asn1.DERTaggedObject({'obj': d1}); * hex = d2.getEncodedHex(); */ KJUR.asn1.DERTaggedObject = function(params) { KJUR.asn1.DERTaggedObject.superclass.constructor.call(this) this.hT = 'a0' this.hV = '' this.isExplicit = true this.asn1Object = null /** * set value by an ASN1Object * @name setString * @memberOf KJUR.asn1.DERTaggedObject * @function * @param {Boolean} isExplicitFlag flag for explicit/implicit tag * @param {Integer} tagNoHex hexadecimal string of ASN.1 tag * @param {ASN1Object} asn1Object ASN.1 to encapsulate */ this.setASN1Object = function(isExplicitFlag, tagNoHex, asn1Object) { this.hT = tagNoHex this.isExplicit = isExplicitFlag this.asn1Object = asn1Object if (this.isExplicit) { this.hV = this.asn1Object.getEncodedHex() this.hTLV = null this.isModified = true } else { this.hV = null this.hTLV = asn1Object.getEncodedHex() this.hTLV = this.hTLV.replace(/^../, tagNoHex) this.isModified = false } } this.getFreshValueHex = function() { return this.hV } if (typeof params !== 'undefined') { if (typeof params['tag'] !== 'undefined') { this.hT = params['tag'] } if (typeof params['explicit'] !== 'undefined') { this.isExplicit = params['explicit'] } if (typeof params['obj'] !== 'undefined') { this.asn1Object = params['obj'] this.setASN1Object(this.isExplicit, this.hT, this.asn1Object) } } } JSX.extend(KJUR.asn1.DERTaggedObject, KJUR.asn1.ASN1Object);// Hex JavaScript decoder // Copyright (c) 2008-2013 Lapo Luchini // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. /* jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */ (function(undefined) { 'use strict' var Hex = {} var decoder Hex.decode = function(a) { var i if (decoder === undefined) { var hex = '0123456789ABCDEF' var ignore = ' \f\n\r\t\u00A0\u2028\u2029' decoder = [] for (i = 0; i < 16; ++i) { decoder[hex.charAt(i)] = i } hex = hex.toLowerCase() for (i = 10; i < 16; ++i) { decoder[hex.charAt(i)] = i } for (i = 0; i < ignore.length; ++i) { decoder[ignore.charAt(i)] = -1 } } var out = [] var bits = 0 var char_count = 0 for (i = 0; i < a.length; ++i) { var c = a.charAt(i) if (c == '=') { break } c = decoder[c] if (c == -1) { continue } if (c === undefined) { throw 'Illegal character at offset ' + i } bits |= c if (++char_count >= 2) { out[out.length] = bits bits = 0 char_count = 0 } else { bits <<= 4 } } if (char_count) { throw 'Hex encoding incomplete: 4 bits missing' } return out } // export globals window.Hex = Hex })();// Base64 JavaScript decoder // Copyright (c) 2008-2013 Lapo Luchini // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. /* jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */ (function(undefined) { 'use strict' var Base64 = {} var decoder Base64.decode = function(a) { var i if (decoder === undefined) { var b64 = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' var ignore = '= \f\n\r\t\u00A0\u2028\u2029' decoder = [] for (i = 0; i < 64; ++i) { decoder[b64.charAt(i)] = i } for (i = 0; i < ignore.length; ++i) { decoder[ignore.charAt(i)] = -1 } } var out = [] var bits = 0; var char_count = 0 for (i = 0; i < a.length; ++i) { var c = a.charAt(i) if (c == '=') { break } c = decoder[c] if (c == -1) { continue } if (c === undefined) { throw 'Illegal character at offset ' + i } bits |= c if (++char_count >= 4) { out[out.length] = (bits >> 16) out[out.length] = (bits >> 8) & 0xFF out[out.length] = bits & 0xFF bits = 0 char_count = 0 } else { bits <<= 6 } } switch (char_count) { case 1: throw 'Base64 encoding incomplete: at least 2 bits missing' case 2: out[out.length] = (bits >> 10) break case 3: out[out.length] = (bits >> 16) out[out.length] = (bits >> 8) & 0xFF break } return out } Base64.re = /-----BEGIN [^-]+-----([A-Za-z0-9+\/=\s]+)-----END [^-]+-----|begin-base64[^\n]+\n([A-Za-z0-9+\/=\s]+)====/ Base64.unarmor = function(a) { var m = Base64.re.exec(a) if (m) { if (m[1]) { a = m[1] } else if (m[2]) { a = m[2] } else { throw 'RegExp out of sync' } } return Base64.decode(a) } // export globals window.Base64 = Base64 })();// ASN.1 JavaScript decoder // Copyright (c) 2008-2013 Lapo Luchini // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. /* jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */ /*global oids */ (function(undefined) { 'use strict' var hardLimit = 100 var ellipsis = '\u2026' var DOM = { tag: function(tagName, className) { var t = document.createElement(tagName) t.className = className return t }, text: function(str) { return document.createTextNode(str) } } function Stream(enc, pos) { if (enc instanceof Stream) { this.enc = enc.enc this.pos = enc.pos } else { this.enc = enc this.pos = pos } } Stream.prototype.get = function(pos) { if (pos === undefined) { pos = this.pos++ } if (pos >= this.enc.length) { throw 'Requesting byte offset ' + pos + ' on a stream of length ' + this.enc.length } return this.enc[pos] } Stream.prototype.hexDigits = '0123456789ABCDEF' Stream.prototype.hexByte = function(b) { return this.hexDigits.charAt((b >> 4) & 0xF) + this.hexDigits.charAt(b & 0xF) } Stream.prototype.hexDump = function(start, end, raw) { var s = '' for (var i = start; i < end; ++i) { s += this.hexByte(this.get(i)) if (raw !== true) { switch (i & 0xF) { case 0x7: s += ' '; break case 0xF: s += '\n'; break default: s += ' ' } } } return s } Stream.prototype.parseStringISO = function(start, end) { var s = '' for (var i = start; i < end; ++i) { s += String.fromCharCode(this.get(i)) } return s } Stream.prototype.parseStringUTF = function(start, end) { var s = '' for (var i = start; i < end;) { var c = this.get(i++) if (c < 128) { s += String.fromCharCode(c) } else if ((c > 191) && (c < 224)) { s += String.fromCharCode(((c & 0x1F) << 6) | (this.get(i++) & 0x3F)) } else { s += String.fromCharCode(((c & 0x0F) << 12) | ((this.get(i++) & 0x3F) << 6) | (this.get(i++) & 0x3F)) } } return s } Stream.prototype.parseStringBMP = function(start, end) { var str = '' for (var i = start; i < end; i += 2) { var high_byte = this.get(i) var low_byte = this.get(i + 1) str += String.fromCharCode((high_byte << 8) + low_byte) } return str } Stream.prototype.reTime = /^((?:1[89]|2\d)?\d\d)(0[1-9]|1[0-2])(0[1-9]|[12]\d|3[01])([01]\d|2[0-3])(?:([0-5]\d)(?:([0-5]\d)(?:[.,](\d{1,3}))?)?)?(Z|[-+](?:[0]\d|1[0-2])([0-5]\d)?)?$/ Stream.prototype.parseTime = function(start, end) { var s = this.parseStringISO(start, end) var m = this.reTime.exec(s) if (!m) { return 'Unrecognized time: ' + s } s = m[1] + '-' + m[2] + '-' + m[3] + ' ' + m[4] if (m[5]) { s += ':' + m[5] if (m[6]) { s += ':' + m[6] if (m[7]) { s += '.' + m[7] } } } if (m[8]) { s += ' UTC' if (m[8] != 'Z') { s += m[8] if (m[9]) { s += ':' + m[9] } } } return s } Stream.prototype.parseInteger = function(start, end) { // TODO support negative numbers var len = end - start if (len > 4) { len <<= 3 var s = this.get(start) if (s === 0) { len -= 8 } else { while (s < 128) { s <<= 1 --len } } return '(' + len + ' bit)' } var n = 0 for (var i = start; i < end; ++i) { n = (n << 8) | this.get(i) } return n } Stream.prototype.parseBitString = function(start, end) { var unusedBit = this.get(start) var lenBit = ((end - start - 1) << 3) - unusedBit var s = '(' + lenBit + ' bit)' if (lenBit <= 20) { var skip = unusedBit s += ' ' for (var i = end - 1; i > start; --i) { var b = this.get(i) for (var j = skip; j < 8; ++j) { s += (b >> j) & 1 ? '1' : '0' } skip = 0 } } return s } Stream.prototype.parseOctetString = function(start, end) { var len = end - start var s = '(' + len + ' byte) ' if (len > hardLimit) { end = start + hardLimit } for (var i = start; i < end; ++i) { s += this.hexByte(this.get(i)) } // TODO: also try Latin1? if (len > hardLimit) { s += ellipsis } return s } Stream.prototype.parseOID = function(start, end) { var s = '' var n = 0 var bits = 0 for (var i = start; i < end; ++i) { var v = this.get(i) n = (n << 7) | (v & 0x7F) bits += 7 if (!(v & 0x80)) { // finished if (s === '') { var m = n < 80 ? n < 40 ? 0 : 1 : 2 s = m + '.' + (n - m * 40) } else { s += '.' + ((bits >= 31) ? 'bigint' : n) } n = bits = 0 } } return s } function ASN1(stream, header, length, tag, sub) { this.stream = stream this.header = header this.length = length this.tag = tag this.sub = sub } ASN1.prototype.typeName = function() { if (this.tag === undefined) { return 'unknown' } var tagClass = this.tag >> 6 var tagConstructed = (this.tag >> 5) & 1 var tagNumber = this.tag & 0x1F switch (tagClass) { case 0: // universal switch (tagNumber) { case 0x00: return 'EOC' case 0x01: return 'BOOLEAN' case 0x02: return 'INTEGER' case 0x03: return 'BIT_STRING' case 0x04: return 'OCTET_STRING' case 0x05: return 'NULL' case 0x06: return 'OBJECT_IDENTIFIER' case 0x07: return 'ObjectDescriptor' case 0x08: return 'EXTERNAL' case 0x09: return 'REAL' case 0x0A: return 'ENUMERATED' case 0x0B: return 'EMBEDDED_PDV' case 0x0C: return 'UTF8String' case 0x10: return 'SEQUENCE' case 0x11: return 'SET' case 0x12: return 'NumericString' case 0x13: return 'PrintableString' // ASCII subset case 0x14: return 'TeletexString' // aka T61String case 0x15: return 'VideotexString' case 0x16: return 'IA5String' // ASCII case 0x17: return 'UTCTime' case 0x18: return 'GeneralizedTime' case 0x19: return 'GraphicString' case 0x1A: return 'VisibleString' // ASCII subset case 0x1B: return 'GeneralString' case 0x1C: return 'UniversalString' case 0x1E: return 'BMPString' default: return 'Universal_' + tagNumber.toString(16) } case 1: return 'Application_' + tagNumber.toString(16) case 2: return '[' + tagNumber + ']' // Context case 3: return 'Private_' + tagNumber.toString(16) } } ASN1.prototype.reSeemsASCII = /^[ -~]+$/ ASN1.prototype.content = function() { if (this.tag === undefined) { return null } var tagClass = this.tag >> 6 var tagNumber = this.tag & 0x1F var content = this.posContent() var len = Math.abs(this.length) if (tagClass !== 0) { // universal if (this.sub !== null) { return '(' + this.sub.length + ' elem)' } // TODO: TRY TO PARSE ASCII STRING var s = this.stream.parseStringISO(content, content + Math.min(len, hardLimit)) if (this.reSeemsASCII.test(s)) { return s.substring(0, 2 * hardLimit) + ((s.length > 2 * hardLimit) ? ellipsis : '') } else { return this.stream.parseOctetString(content, content + len) } } switch (tagNumber) { case 0x01: // BOOLEAN return (this.stream.get(content) === 0) ? 'false' : 'true' case 0x02: // INTEGER return this.stream.parseInteger(content, content + len) case 0x03: // BIT_STRING return this.sub ? '(' + this.sub.length + ' elem)' : this.stream.parseBitString(content, content + len) case 0x04: // OCTET_STRING return this.sub ? '(' + this.sub.length + ' elem)' : this.stream.parseOctetString(content, content + len) // case 0x05: // NULL case 0x06: // OBJECT_IDENTIFIER return this.stream.parseOID(content, content + len) // case 0x07: // ObjectDescriptor // case 0x08: // EXTERNAL // case 0x09: // REAL // case 0x0A: // ENUMERATED // case 0x0B: // EMBEDDED_PDV case 0x10: // SEQUENCE case 0x11: // SET return '(' + this.sub.length + ' elem)' case 0x0C: // UTF8String return this.stream.parseStringUTF(content, content + len) case 0x12: // NumericString case 0x13: // PrintableString case 0x14: // TeletexString case 0x15: // VideotexString case 0x16: // IA5String // case 0x19: // GraphicString case 0x1A: // VisibleString // case 0x1B: // GeneralString // case 0x1C: // UniversalString return this.stream.parseStringISO(content, content + len) case 0x1E: // BMPString return this.stream.parseStringBMP(content, content + len) case 0x17: // UTCTime case 0x18: // GeneralizedTime return this.stream.parseTime(content, content + len) } return null } ASN1.prototype.toString = function() { return this.typeName() + '@' + this.stream.pos + '[header:' + this.header + ',length:' + this.length + ',sub:' + ((this.sub === null) ? 'null' : this.sub.length) + ']' } ASN1.prototype.print = function(indent) { if (indent === undefined) indent = '' document.writeln(indent + this) if (this.sub !== null) { indent += ' ' for (var i = 0, max = this.sub.length; i < max; ++i) { this.sub[i].print(indent) } } } ASN1.prototype.toPrettyString = function(indent) { if (indent === undefined) indent = '' var s = indent + this.typeName() + ' @' + this.stream.pos if (this.length >= 0) { s += '+' } s += this.length if (this.tag & 0x20) { s += ' (constructed)' } else if (((this.tag == 0x03) || (this.tag == 0x04)) && (this.sub !== null)) { s += ' (encapsulates)' } s += '\n' if (this.sub !== null) { indent += ' ' for (var i = 0, max = this.sub.length; i < max; ++i) { s += this.sub[i].toPrettyString(indent) } } return s } ASN1.prototype.toDOM = function() { var node = DOM.tag('div', 'node') node.asn1 = this var head = DOM.tag('div', 'head') var s = this.typeName().replace(/_/g, ' ') head.innerHTML = s var content = this.content() if (content !== null) { content = String(content).replace(/' s += 'Length: ' + this.header + '+' if (this.length >= 0) { s += this.length } else { s += (-this.length) + ' (undefined)' } if (this.tag & 0x20) { s += '
(constructed)' } else if (((this.tag == 0x03) || (this.tag == 0x04)) && (this.sub !== null)) { s += '
(encapsulates)' } // TODO if (this.tag == 0x03) s += "Unused bits: " if (content !== null) { s += '
Value:
' + content + '' if ((typeof oids === 'object') && (this.tag == 0x06)) { var oid = oids[content] if (oid) { if (oid.d) s += '
' + oid.d if (oid.c) s += '
' + oid.c if (oid.w) s += '
(warning!)' } } } value.innerHTML = s node.appendChild(value) var sub = DOM.tag('div', 'sub') if (this.sub !== null) { for (var i = 0, max = this.sub.length; i < max; ++i) { sub.appendChild(this.sub[i].toDOM()) } } node.appendChild(sub) head.onclick = function() { node.className = (node.className == 'node collapsed') ? 'node' : 'node collapsed' } return node } ASN1.prototype.posStart = function() { return this.stream.pos } ASN1.prototype.posContent = function() { return this.stream.pos + this.header } ASN1.prototype.posEnd = function() { return this.stream.pos + this.header + Math.abs(this.length) } ASN1.prototype.fakeHover = function(current) { this.node.className += ' hover' if (current) { this.head.className += ' hover' } } ASN1.prototype.fakeOut = function(current) { var re = / ?hover/ this.node.className = this.node.className.replace(re, '') if (current) { this.head.className = this.head.className.replace(re, '') } } ASN1.prototype.toHexDOM_sub = function(node, className, stream, start, end) { if (start >= end) { return } var sub = DOM.tag('span', className) sub.appendChild(DOM.text( stream.hexDump(start, end))) node.appendChild(sub) } ASN1.prototype.toHexDOM = function(root) { var node = DOM.tag('span', 'hex') if (root === undefined) root = node this.head.hexNode = node this.head.onmouseover = function() { this.hexNode.className = 'hexCurrent' } this.head.onmouseout = function() { this.hexNode.className = 'hex' } node.asn1 = this node.onmouseover = function() { var current = !root.selected if (current) { root.selected = this.asn1 this.className = 'hexCurrent' } this.asn1.fakeHover(current) } node.onmouseout = function() { var current = (root.selected == this.asn1) this.asn1.fakeOut(current) if (current) { root.selected = null this.className = 'hex' } } this.toHexDOM_sub(node, 'tag', this.stream, this.posStart(), this.posStart() + 1) this.toHexDOM_sub(node, (this.length >= 0) ? 'dlen' : 'ulen', this.stream, this.posStart() + 1, this.posContent()) if (this.sub === null) { node.appendChild(DOM.text( this.stream.hexDump(this.posContent(), this.posEnd()))) } else if (this.sub.length > 0) { var first = this.sub[0] var last = this.sub[this.sub.length - 1] this.toHexDOM_sub(node, 'intro', this.stream, this.posContent(), first.posStart()) for (var i = 0, max = this.sub.length; i < max; ++i) { node.appendChild(this.sub[i].toHexDOM(root)) } this.toHexDOM_sub(node, 'outro', this.stream, last.posEnd(), this.posEnd()) } return node } ASN1.prototype.toHexString = function(root) { return this.stream.hexDump(this.posStart(), this.posEnd(), true) } ASN1.decodeLength = function(stream) { var buf = stream.get() var len = buf & 0x7F if (len == buf) { return len } if (len > 3) { throw 'Length over 24 bits not supported at position ' + (stream.pos - 1) } if (len === 0) { return -1 } // undefined buf = 0 for (var i = 0; i < len; ++i) { buf = (buf << 8) | stream.get() } return buf } ASN1.hasContent = function(tag, len, stream) { if (tag & 0x20) // constructed { return true } if ((tag < 0x03) || (tag > 0x04)) { return false } var p = new Stream(stream) if (tag == 0x03) p.get() // BitString unused bits, must be in [0, 7] var subTag = p.get() if ((subTag >> 6) & 0x01) // not (universal or context) { return false } try { var subLength = ASN1.decodeLength(p) return ((p.pos - stream.pos) + subLength == len) } catch (exception) { return false } } ASN1.decode = function(stream) { if (!(stream instanceof Stream)) { stream = new Stream(stream, 0) } var streamStart = new Stream(stream) var tag = stream.get() var len = ASN1.decodeLength(stream) var header = stream.pos - streamStart.pos var sub = null if (ASN1.hasContent(tag, len, stream)) { // it has content, so we decode it var start = stream.pos if (tag == 0x03) stream.get() // skip BitString unused bits, must be in [0, 7] sub = [] if (len >= 0) { // definite length var end = start + len while (stream.pos < end) { sub[sub.length] = ASN1.decode(stream) } if (stream.pos != end) { throw 'Content size is not correct for container starting at offset ' + start } } else { // undefined length try { for (;;) { var s = ASN1.decode(stream) if (s.tag === 0) { break } sub[sub.length] = s } len = start - stream.pos } catch (e) { throw 'Exception while decoding undefined length content: ' + e } } } else { stream.pos += len } // skip content return new ASN1(streamStart, header, len, tag, sub) } ASN1.test = function() { var test = [ { value: [0x27], expected: 0x27 }, { value: [0x81, 0xC9], expected: 0xC9 }, { value: [0x83, 0xFE, 0xDC, 0xBA], expected: 0xFEDCBA } ] for (var i = 0, max = test.length; i < max; ++i) { var pos = 0 var stream = new Stream(test[i].value, 0) var res = ASN1.decodeLength(stream) if (res != test[i].expected) { document.write('In test[' + i + '] expected ' + test[i].expected + ' got ' + res + '\n') } } } // export globals window.ASN1 = ASN1 })()/** * Retrieve the hexadecimal value (as a string) of the current ASN.1 element * @returns {string} * @public */ ASN1.prototype.getHexStringValue = function() { var hexString = this.toHexString() var offset = this.header * 2 var length = this.length * 2 return hexString.substr(offset, length) } /** * Method to parse a pem encoded string containing both a public or private key. * The method will translate the pem encoded string in a der encoded string and * will parse private key and public key parameters. This method accepts public key * in the rsaencryption pkcs #1 format (oid: 1.2.840.113549.1.1.1). * * @todo Check how many rsa formats use the same format of pkcs #1. * * The format is defined as: * PublicKeyInfo ::= SEQUENCE { * algorithm AlgorithmIdentifier, * PublicKey BIT STRING * } * Where AlgorithmIdentifier is: * AlgorithmIdentifier ::= SEQUENCE { * algorithm OBJECT IDENTIFIER, the OID of the enc algorithm * parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1) * } * and PublicKey is a SEQUENCE encapsulated in a BIT STRING * RSAPublicKey ::= SEQUENCE { * modulus INTEGER, -- n * publicExponent INTEGER -- e * } * it's possible to examine the structure of the keys obtained from openssl using * an asn.1 dumper as the one used here to parse the components: http://lapo.it/asn1js/ * @argument {string} pem the pem encoded string, can include the BEGIN/END header/footer * @private */ RSAKey.prototype.parseKey = function(pem) { try { var modulus = 0 var public_exponent = 0 var reHex = /^\s*(?:[0-9A-Fa-f][0-9A-Fa-f]\s*)+$/ var der = reHex.test(pem) ? Hex.decode(pem) : Base64.unarmor(pem) var asn1 = ASN1.decode(der) // Fixes a bug with OpenSSL 1.0+ private keys if (asn1.sub.length === 3) { asn1 = asn1.sub[2].sub[0] } if (asn1.sub.length === 9) { // Parse the private key. modulus = asn1.sub[1].getHexStringValue() // bigint this.n = parseBigInt(modulus, 16) public_exponent = asn1.sub[2].getHexStringValue() // int this.e = parseInt(public_exponent, 16) var private_exponent = asn1.sub[3].getHexStringValue() // bigint this.d = parseBigInt(private_exponent, 16) var prime1 = asn1.sub[4].getHexStringValue() // bigint this.p = parseBigInt(prime1, 16) var prime2 = asn1.sub[5].getHexStringValue() // bigint this.q = parseBigInt(prime2, 16) var exponent1 = asn1.sub[6].getHexStringValue() // bigint this.dmp1 = parseBigInt(exponent1, 16) var exponent2 = asn1.sub[7].getHexStringValue() // bigint this.dmq1 = parseBigInt(exponent2, 16) var coefficient = asn1.sub[8].getHexStringValue() // bigint this.coeff = parseBigInt(coefficient, 16) } else if (asn1.sub.length === 2) { // Parse the public key. var bit_string = asn1.sub[1] var sequence = bit_string.sub[0] modulus = sequence.sub[0].getHexStringValue() this.n = parseBigInt(modulus, 16) public_exponent = sequence.sub[1].getHexStringValue() this.e = parseInt(public_exponent, 16) } else { return false } return true } catch (ex) { return false } } /** * Translate rsa parameters in a hex encoded string representing the rsa key. * * The translation follow the ASN.1 notation : * RSAPrivateKey ::= SEQUENCE { * version Version, * modulus INTEGER, -- n * publicExponent INTEGER, -- e * privateExponent INTEGER, -- d * prime1 INTEGER, -- p * prime2 INTEGER, -- q * exponent1 INTEGER, -- d mod (p1) * exponent2 INTEGER, -- d mod (q-1) * coefficient INTEGER, -- (inverse of q) mod p * } * @returns {string} DER Encoded String representing the rsa private key * @private */ RSAKey.prototype.getPrivateBaseKey = function() { var options = { 'array': [ new KJUR.asn1.DERInteger({ 'int': 0 }), new KJUR.asn1.DERInteger({ 'bigint': this.n }), new KJUR.asn1.DERInteger({ 'int': this.e }), new KJUR.asn1.DERInteger({ 'bigint': this.d }), new KJUR.asn1.DERInteger({ 'bigint': this.p }), new KJUR.asn1.DERInteger({ 'bigint': this.q }), new KJUR.asn1.DERInteger({ 'bigint': this.dmp1 }), new KJUR.asn1.DERInteger({ 'bigint': this.dmq1 }), new KJUR.asn1.DERInteger({ 'bigint': this.coeff }) ] } var seq = new KJUR.asn1.DERSequence(options) return seq.getEncodedHex() } /** * base64 (pem) encoded version of the DER encoded representation * @returns {string} pem encoded representation without header and footer * @public */ RSAKey.prototype.getPrivateBaseKeyB64 = function() { return hex2b64(this.getPrivateBaseKey()) } /** * Translate rsa parameters in a hex encoded string representing the rsa public key. * The representation follow the ASN.1 notation : * PublicKeyInfo ::= SEQUENCE { * algorithm AlgorithmIdentifier, * PublicKey BIT STRING * } * Where AlgorithmIdentifier is: * AlgorithmIdentifier ::= SEQUENCE { * algorithm OBJECT IDENTIFIER, the OID of the enc algorithm * parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1) * } * and PublicKey is a SEQUENCE encapsulated in a BIT STRING * RSAPublicKey ::= SEQUENCE { * modulus INTEGER, -- n * publicExponent INTEGER -- e * } * @returns {string} DER Encoded String representing the rsa public key * @private */ RSAKey.prototype.getPublicBaseKey = function() { var options = { 'array': [ new KJUR.asn1.DERObjectIdentifier({ 'oid': '1.2.840.113549.1.1.1' }), // RSA Encryption pkcs #1 oid new KJUR.asn1.DERNull() ] } var first_sequence = new KJUR.asn1.DERSequence(options) options = { 'array': [ new KJUR.asn1.DERInteger({ 'bigint': this.n }), new KJUR.asn1.DERInteger({ 'int': this.e }) ] } var second_sequence = new KJUR.asn1.DERSequence(options) options = { 'hex': '00' + second_sequence.getEncodedHex() } var bit_string = new KJUR.asn1.DERBitString(options) options = { 'array': [ first_sequence, bit_string ] } var seq = new KJUR.asn1.DERSequence(options) return seq.getEncodedHex() } /** * base64 (pem) encoded version of the DER encoded representation * @returns {string} pem encoded representation without header and footer * @public */ RSAKey.prototype.getPublicBaseKeyB64 = function() { return hex2b64(this.getPublicBaseKey()) } /** * wrap the string in block of width chars. The default value for rsa keys is 64 * characters. * @param {string} str the pem encoded string without header and footer * @param {Number} [width=64] - the length the string has to be wrapped at * @returns {string} * @private */ RSAKey.prototype.wordwrap = function(str, width) { width = width || 64 if (!str) { return str } var regex = '(.{1,' + width + '})( +|$\n?)|(.{1,' + width + '})' return str.match(RegExp(regex, 'g')).join('\n') } /** * Retrieve the pem encoded private key * @returns {string} the pem encoded private key with header/footer * @public */ RSAKey.prototype.getPrivateKey = function() { var key = '-----BEGIN RSA PRIVATE KEY-----\n' key += this.wordwrap(this.getPrivateBaseKeyB64()) + '\n' key += '-----END RSA PRIVATE KEY-----' return key } /** * Retrieve the pem encoded public key * @returns {string} the pem encoded public key with header/footer * @public */ RSAKey.prototype.getPublicKey = function() { var key = '-----BEGIN PUBLIC KEY-----\n' key += this.wordwrap(this.getPublicBaseKeyB64()) + '\n' key += '-----END PUBLIC KEY-----' return key } /** * Check if the object contains the necessary parameters to populate the rsa modulus * and public exponent parameters. * @param {Object} [obj={}] - An object that may contain the two public key * parameters * @returns {boolean} true if the object contains both the modulus and the public exponent * properties (n and e) * @todo check for types of n and e. N should be a parseable bigInt object, E should * be a parseable integer number * @private */ RSAKey.prototype.hasPublicKeyProperty = function(obj) { obj = obj || {} return ( obj.hasOwnProperty('n') && obj.hasOwnProperty('e') ) } /** * Check if the object contains ALL the parameters of an RSA key. * @param {Object} [obj={}] - An object that may contain nine rsa key * parameters * @returns {boolean} true if the object contains all the parameters needed * @todo check for types of the parameters all the parameters but the public exponent * should be parseable bigint objects, the public exponent should be a parseable integer number * @private */ RSAKey.prototype.hasPrivateKeyProperty = function(obj) { obj = obj || {} return ( obj.hasOwnProperty('n') && obj.hasOwnProperty('e') && obj.hasOwnProperty('d') && obj.hasOwnProperty('p') && obj.hasOwnProperty('q') && obj.hasOwnProperty('dmp1') && obj.hasOwnProperty('dmq1') && obj.hasOwnProperty('coeff') ) } /** * Parse the properties of obj in the current rsa object. Obj should AT LEAST * include the modulus and public exponent (n, e) parameters. * @param {Object} obj - the object containing rsa parameters * @private */ RSAKey.prototype.parsePropertiesFrom = function(obj) { this.n = obj.n this.e = obj.e if (obj.hasOwnProperty('d')) { this.d = obj.d this.p = obj.p this.q = obj.q this.dmp1 = obj.dmp1 this.dmq1 = obj.dmq1 this.coeff = obj.coeff } } /** * Create a new JSEncryptRSAKey that extends Tom Wu's RSA key object. * This object is just a decorator for parsing the key parameter * @param {string|Object} key - The key in string format, or an object containing * the parameters needed to build a RSAKey object. * @constructor */ var JSEncryptRSAKey = function(key) { // Call the super constructor. RSAKey.call(this) // If a key key was provided. if (key) { // If this is a string... if (typeof key === 'string') { this.parseKey(key) } else if ( this.hasPrivateKeyProperty(key) || this.hasPublicKeyProperty(key) ) { // Set the values for the key. this.parsePropertiesFrom(key) } } } // Derive from RSAKey. JSEncryptRSAKey.prototype = new RSAKey() // Reset the contructor. JSEncryptRSAKey.prototype.constructor = JSEncryptRSAKey /** * * @param {Object} [options = {}] - An object to customize JSEncrypt behaviour * possible parameters are: * - default_key_size {number} default: 1024 the key size in bit * - default_public_exponent {string} default: '010001' the hexadecimal representation of the public exponent * - log {boolean} default: false whether log warn/error or not * @constructor */ var JSEncrypt = function(options) { options = options || {} this.default_key_size = parseInt(options.default_key_size) || 1024 this.default_public_exponent = options.default_public_exponent || '010001' // 65537 default openssl public exponent for rsa key type this.log = options.log || false // The private and public key. this.key = null } /** * Method to set the rsa key parameter (one method is enough to set both the public * and the private key, since the private key contains the public key paramenters) * Log a warning if logs are enabled * @param {Object|string} key the pem encoded string or an object (with or without header/footer) * @public */ JSEncrypt.prototype.setKey = function(key) { if (this.log && this.key) { console.warn('A key was already set, overriding existing.') } this.key = new JSEncryptRSAKey(key) } /** * Proxy method for setKey, for api compatibility * @see setKey * @public */ JSEncrypt.prototype.setPrivateKey = function(privkey) { // Create the key. this.setKey(privkey) } /** * Proxy method for setKey, for api compatibility * @see setKey * @public */ JSEncrypt.prototype.setPublicKey = function(pubkey) { // Sets the public key. this.setKey(pubkey) } /** * Proxy method for RSAKey object's decrypt, decrypt the string using the private * components of the rsa key object. Note that if the object was not set will be created * on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor * @param {string} string base64 encoded crypted string to decrypt * @return {string} the decrypted string * @public */ JSEncrypt.prototype.decrypt = function(string) { // Return the decrypted string. try { return this.getKey().decrypt(b64tohex(string)) } catch (ex) { return false } } /** * Proxy method for RSAKey object's encrypt, encrypt the string using the public * components of the rsa key object. Note that if the object was not set will be created * on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor * @param {string} string the string to encrypt * @return {string} the encrypted string encoded in base64 * @public */ JSEncrypt.prototype.encrypt = function(string) { // Return the encrypted string. try { return hex2b64(this.getKey().encrypt(string)) } catch (ex) { return false } } /** * Getter for the current JSEncryptRSAKey object. If it doesn't exists a new object * will be created and returned * @param {callback} [cb] the callback to be called if we want the key to be generated * in an async fashion * @returns {JSEncryptRSAKey} the JSEncryptRSAKey object * @public */ JSEncrypt.prototype.getKey = function(cb) { // Only create new if it does not exist. if (!this.key) { // Get a new private key. this.key = new JSEncryptRSAKey() if (cb && {}.toString.call(cb) === '[object Function]') { this.key.generateAsync(this.default_key_size, this.default_public_exponent, cb) return } // Generate the key. this.key.generate(this.default_key_size, this.default_public_exponent) } return this.key } /** * Returns the pem encoded representation of the private key * If the key doesn't exists a new key will be created * @returns {string} pem encoded representation of the private key WITH header and footer * @public */ JSEncrypt.prototype.getPrivateKey = function() { // Return the private representation of this key. return this.getKey().getPrivateKey() } /** * Returns the pem encoded representation of the private key * If the key doesn't exists a new key will be created * @returns {string} pem encoded representation of the private key WITHOUT header and footer * @public */ JSEncrypt.prototype.getPrivateKeyB64 = function() { // Return the private representation of this key. return this.getKey().getPrivateBaseKeyB64() } /** * Returns the pem encoded representation of the public key * If the key doesn't exists a new key will be created * @returns {string} pem encoded representation of the public key WITH header and footer * @public */ JSEncrypt.prototype.getPublicKey = function() { // Return the private representation of this key. return this.getKey().getPublicKey() } /** * Returns the pem encoded representation of the public key * If the key doesn't exists a new key will be created * @returns {string} pem encoded representation of the public key WITHOUT header and footer * @public */ JSEncrypt.prototype.getPublicKeyB64 = function() { // Return the private representation of this key. return this.getKey().getPublicBaseKeyB64() } exports.JSEncrypt = JSEncrypt })(JSEncryptExports) var JSEncrypt = JSEncryptExports.JSEncrypt